Suppr超能文献

基于批量归一化和 Inception-Residual 模块的卷积神经网络用于安卓恶意软件分类。

Convolution neural network with batch normalization and inception-residual modules for Android malware classification.

机构信息

College of Information Science Technology, Hainan Normal University, No.99 LongKun South Road, Haikou city, 571158, Hainan Province, China.

College of Information Engineering, Hainan Vocational University of Science and Technology, No.18 QiongShan Road, Haikou city, 571126, Hainan Province, China.

出版信息

Sci Rep. 2022 Aug 17;12(1):13996. doi: 10.1038/s41598-022-18402-6.

Abstract

Deep learning technology is changing the landscape of cybersecurity research, especially the study of large amounts of data. With the rapid growth in the number of malware, developing of an efficient and reliable method for classifying malware has become one of the research priorities. In this paper, a new method, BIR-CNN, is proposed to classify of Android malware. It combines convolution neural network (CNN) with batch normalization and inception-residual (BIR) network modules by using 347-dim network traffic features. CNN combines inception-residual modules with a convolution layer that can enhance the learning ability of the model. Batch Normalization can speed up the training process and avoid over-fitting of the model. Finally, experiments are conducted on the publicly available network traffic dataset CICAndMal2017 and compared with three traditional machine learning algorithms and CNN. The accuracy of BIR-CNN is 99.73% in binary classification (2-classifier). Moreover, the BIR-CNN can classify malware by its category (4-classifier) and malicious family (35-classifier), with a classification accuracy of 99.53% and 94.38%, respectively. The experimental results show that the proposed model is an effective method for Android malware classification, especially in malware category and family classifier.

摘要

深度学习技术正在改变网络安全研究的格局,特别是在大量数据研究方面。随着恶意软件数量的迅速增长,开发一种高效、可靠的恶意软件分类方法已成为研究重点之一。本文提出了一种新的方法 BIR-CNN,用于对 Android 恶意软件进行分类。它通过使用 347 维网络流量特征,将卷积神经网络 (CNN) 与批量归一化和 inception-residual (BIR) 网络模块结合在一起。CNN 将 inception-residual 模块与卷积层结合在一起,从而增强了模型的学习能力。批量归一化可以加快训练过程并避免模型过拟合。最后,在公开的网络流量数据集 CICAndMal2017 上进行了实验,并与三种传统机器学习算法和 CNN 进行了比较。BIR-CNN 在二进制分类(2 分类)中的准确率为 99.73%。此外,BIR-CNN 还可以根据恶意软件的类别(4 分类)和恶意家族(35 分类)进行分类,准确率分别为 99.53%和 94.38%。实验结果表明,该模型是一种有效的 Android 恶意软件分类方法,特别是在恶意软件类别和家族分类器方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ae/9385674/c1faf39b8b3c/41598_2022_18402_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验