Suppr超能文献

基于生成对抗网络的滚动轴承数据生成方法及其故障诊断

A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis.

机构信息

Shenyang Aerospace University, Shenyang 110035, China.

Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang, China.

出版信息

Comput Intell Neurosci. 2022 Jul 13;2022:7592258. doi: 10.1155/2022/7592258. eCollection 2022.

Abstract

As a new generative model, the generative adversarial network (GAN) has great potential in the accuracy and efficiency of generating pseudoreal data. Nowadays, bearing fault diagnosis based on machine learning usually needs sufficient data. If enough near-real data can be generated in the case of insufficient samples in the actual operating condition, the effect of fault diagnosis will be greatly improved. In this study, a new rolling bearing data generation method based on the generative adversarial network (GAN) is proposed, which can be trained adversarially and jointly via a learned embedding, and applied to solve fault diagnosis problems with insufficient data. By analyzing the time-domain characteristics of rolling bearing life cycle monitoring data in actual working conditions, the operation data are divided into three periods, and the construction and training of the generative adversarial network model are carried out. Data generated by adversarial are compared with the real data in the time domain and frequency domain, respectively, and the similarity between the generated data and the real data is verified.

摘要

作为一种新的生成模型,生成对抗网络(GAN)在生成伪真实数据的准确性和效率方面具有巨大的潜力。如今,基于机器学习的轴承故障诊断通常需要足够的数据。如果在实际运行条件下样本不足的情况下能够生成足够接近真实的数据,那么故障诊断的效果将会大大提高。在这项研究中,提出了一种基于生成对抗网络(GAN)的新的滚动轴承数据生成方法,该方法可以通过学习的嵌入进行对抗性训练和联合训练,并应用于解决数据不足的故障诊断问题。通过分析实际工作条件下滚动轴承寿命监测数据的时域特征,将运行数据分为三个阶段,并进行生成对抗网络模型的构建和训练。分别对对抗生成的数据和时域、频域中的真实数据进行比较,并验证生成数据与真实数据的相似性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7970/9300344/b0ea78a53075/CIN2022-7592258.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验