Ye Chunchun, Tan Rui, Wang Anqi, Chen Jie, Comesaña Gándara Bibiana, Breakwell Charlotte, Alvarez-Fernandez Alberto, Fan Zhiyu, Weng Jiaqi, Bezzu C Grazia, Guldin Stefan, Brandon Nigel P, Kucernak Anthony R, Jelfs Kim E, McKeown Neil B, Song Qilei
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202207580. doi: 10.1002/anie.202207580. Epub 2022 Aug 9.
Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.
基于水性有机电解质的氧化还原液流电池(RFBs)是一种用于安全且经济高效的大规模电能存储的有前景的技术。膜分离器是RFBs中的关键组件,它能使电荷载流子离子快速传导,但能最大程度减少氧化还原活性物质的交叉渗透。在此,我们报告了通过调节其聚合物链拓扑结构和孔结构来优化膜离子传输功能的偕胺肟功能化固有微孔聚合物(AO-PIMs)的分子工程。AO-PIM膜与三种新兴的水性有机液流电池化学体系相结合,并且离子选择性膜与中性pH电解质中的分子工程有机分子的协同整合导致循环稳定性显著提高。