Lim Hyung-Seok, Bazak J David, Kim Soowhan, Johnson Samantha I, Feng Ruozhu, Hollas Aaron, Rishko Wilma, Fiedler Kevin R, Chun Jaehun, Liang Yangang, Zhang Xin, Murugesan Vijayakumar, Wang Wei
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
ACS Energy Lett. 2025 May 6;10(6):2631-2640. doi: 10.1021/acsenergylett.5c00468. eCollection 2025 Jun 13.
Aqueous organic redox flow batteries hold great promise as a technology for creating economical grid energy storage using sustainable materials. Nonetheless, the solubility limit presents a universal barrier for all redox-active organic molecules. In this paper, a new approach is proposed to surpass the solubility limit by manipulating the solvation structure with polycomplex ion additives (PIA). Using poly-(3,4-ethylenedioxythiophene) polystyrenesulfonate colloids as one example, its role in dismantling the rigid supramolecular clusters within the highly concentrated 7,8-dihydroxyphenazine-2-sulfonic acid electrolyte is investigated. H and Na NMR spectra and molecular dynamics simulation studies demonstrate that the bipolar structure of the PIA effectively disrupts the aggregations of DHPS and Na ion in the highly concentrated anolyte, thus rendering a more flexible solvation structure and less restrictive ion transport, leading to substantially improved battery performance of an AORFB cell. The anolyte with PIA achieved 1.6 M and 74.3 Ah L anolyte energy capacity.
水系有机氧化还原液流电池作为一种使用可持续材料来实现经济的电网储能的技术,具有巨大的潜力。尽管如此,溶解度极限对所有氧化还原活性有机分子来说都是一个普遍存在的障碍。在本文中,提出了一种新方法,即通过使用聚络合离子添加剂(PIA)来操纵溶剂化结构,从而突破溶解度极限。以聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐胶体为例,研究了其在拆解高浓度7,8-二羟基吩嗪-2-磺酸电解质中刚性超分子簇方面的作用。氢核磁共振谱和钠核磁共振谱以及分子动力学模拟研究表明,PIA的双极结构有效地破坏了高浓度阳极电解液中DHPS和钠离子的聚集,从而形成了更灵活的溶剂化结构和限制更少的离子传输,使AORFB电池的性能得到显著改善。含有PIA的阳极电解液实现了1.6 M的浓度和74.3 Ah L的阳极电解液能量容量。