Suppr超能文献

老年人维生素 D 缺乏预测:机器学习模型的作用。

Prediction of Vitamin D Deficiency in Older Adults: The Role of Machine Learning Models.

机构信息

School of Population Health, University of Auckland, Auckland 1023, New Zealand.

Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

J Clin Endocrinol Metab. 2022 Sep 28;107(10):2737-2747. doi: 10.1210/clinem/dgac432.

Abstract

CONTEXT

Conventional prediction models for vitamin D deficiency have limited accuracy.

BACKGROUND

Using cross-sectional data, we developed models based on machine learning (ML) and compared their performance with those based on a conventional approach.

METHODS

Participants were 5106 community-resident adults (50-84 years; 58% male). In the randomly sampled training set (65%), we constructed 5 ML models: lasso regression, elastic net regression, random forest, gradient boosted decision tree, and dense neural network. The reference model was a logistic regression model. Outcomes were deseasonalized serum 25-hydroxyvitamin D (25(OH)D) <50 nmol/L (yes/no) and <25 nmol/L (yes/no). In the test set (the remaining 35%), we evaluated predictive performance of each model, including area under the receiver operating characteristic curve (AUC) and net benefit (decision curves).

RESULTS

Overall, 1270 (25%) and 91 (2%) had 25(OH)D <50 and <25 nmol/L, respectively. Compared with the reference model, the ML models predicted 25(OH)D <50 nmol/L with similar accuracy. However, for prediction of 25(OH)D <25 nmol/L, all ML models had higher AUC point estimates than the reference model by up to 0.14. AUC was highest for elastic net regression (0.93; 95% CI 0.90-0.96), compared with 0.81 (95% CI 0.71-0.91) for the reference model. In the decision curve analysis, ML models mostly achieved a greater net benefit across a range of thresholds.

CONCLUSION

Compared with conventional models, ML models predicted 25(OH)D <50 nmol/L with similar accuracy but they predicted 25(OH)D <25 nmol/L with greater accuracy. The latter finding suggests a role for ML models in participant selection for vitamin D supplement trials.

摘要

背景

使用横断面数据,我们基于机器学习(ML)建立了模型,并将其性能与传统方法进行了比较。

方法

参与者为 5106 名社区居住的成年人(50-84 岁;58%为男性)。在随机抽样的训练集中(65%),我们构建了 5 个 ML 模型:lasso 回归、弹性网络回归、随机森林、梯度提升决策树和密集神经网络。参考模型为逻辑回归模型。结局为去季节性血清 25-羟维生素 D(25(OH)D)<50 nmol/L(是/否)和<25 nmol/L(是/否)。在测试集中(其余 35%),我们评估了每个模型的预测性能,包括接受者操作特征曲线下面积(AUC)和净收益(决策曲线)。

结果

总体而言,1270 人(25%)和 91 人(2%)的 25(OH)D<50 nmol/L 和<25 nmol/L。与参考模型相比,ML 模型预测 25(OH)D<50 nmol/L 的准确性相似。然而,对于 25(OH)D<25 nmol/L 的预测,所有 ML 模型的 AUC 点估计值均高于参考模型,最高可达 0.14。弹性网络回归的 AUC 最高(0.93;95%CI 0.90-0.96),而参考模型的 AUC 为 0.81(95%CI 0.71-0.91)。在决策曲线分析中,ML 模型在一系列阈值下大多实现了更大的净收益。

结论

与传统模型相比,ML 模型预测 25(OH)D<50 nmol/L 的准确性相似,但预测 25(OH)D<25 nmol/L 的准确性更高。这一发现表明 ML 模型在维生素 D 补充试验的参与者选择中可能具有一定作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验