Madden David Gerard, O'Nolan Daniel, Rampal Nakul, Babu Robin, Çamur Ceren, Al Shakhs Ali N, Zhang Shi-Yuan, Rance Graham A, Perez Javier, Maria Casati Nicola Pietro, Cuadrado-Collados Carlos, O'Sullivan Denis, Rice Nicholas P, Gennett Thomas, Parilla Philip, Shulda Sarah, Hurst Katherine E, Stavila Vitalie, Allendorf Mark D, Silvestre-Albero Joaquin, Forse Alexander C, Champness Neil R, Chapman Karena W, Fairen-Jimenez David
The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
J Am Chem Soc. 2022 Aug 3;144(30):13729-13739. doi: 10.1021/jacs.2c04608. Epub 2022 Jul 25.
We are currently witnessing the dawn of hydrogen (H) economy, where H will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (MOF) for H storage. After densification, this MOF stores 46 g L H at 50 bar and 77 K and delivers 41 and 42 g L H at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H gas when compared with benchmark materials and an 83% reduction compared to compressed H gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H storage applications.
我们目前正见证着氢经济的曙光,在这一经济模式下,氢将很快成为用于供暖、交通运输以及长距离和长期储能的主要燃料。在多种可能性中,氢可以作为压缩气体、低温液体或吸附在多孔材料上的固体燃料进行储存。金属有机框架材料(MOF)已成为在体积和重量基础上具有最高理论储氢密度的吸附材料。然而,将氢用作运输燃料的一个关键瓶颈在于缺乏能够将MOF成型为实用配方同时保持其吸附性能的致密化方法。在此,我们报告了对MOF数据库进行高通量筛选和深入分析以找到最佳材料,随后对一种用于储氢的最佳整体式MOF进行合成、表征和性能评估。致密化后,这种MOF在50巴和77K下储存46克/升氢,当部署在组合温度 - 压力(25 - 50巴/77K → 5巴/160K)变压气体输送系统中时,在25巴和50巴的操作压力下分别释放41克/升和42克/升氢。与基准材料相比,这一性能意味着输送氢气时所需的操作压力降低了80%,与压缩氢气相比降低了83%。我们的研究结果代表了在将高密度材料应用于体积储氢方面向前迈出的重要一步。