Yang Jie, Li Jinfeng, Lan Kun, Wei Anruo, Wang Han, Huang Shigao, Fong Simon
Department of Computer and Information Science, University of Macau, Taipa 999078, China.
Chongqing Industry & Trade Polytechnic, Chongqing 408000, China.
Bioengineering (Basel). 2022 Jun 22;9(7):268. doi: 10.3390/bioengineering9070268.
There are three primary challenges in the automatic diagnosis of arrhythmias by electrocardiogram (ECG): the significant variation among individual patients, the multiple pathologies in the ECG signal and the high cost in annotating clinical ECG with the corresponding labels. Traditional ECG processing approaches rely heavily on prior knowledge, such as those from feature extraction and waveform analysis. The preprocessing for prior knowledge incurs computational overhead. Furthermore, standard deep learning methods do not fully consider the dynamic temporal, spatial and multi-labeling characteristics of ECG data. In clinical ECG waveforms, it is common to see multi-labeling in which a patient is labeled with multiple classes of arrhythmias. However, multiclass approaches in current research mainly solve the multi-label machine learning problem, ignoring the correlation between diseases, resulting in information loss. In this paper, an arrhythmia detection and classification scheme called multi-label fusion deep learning is proposed. The objective is to build a unified system with automatic feature learning which supports effective multi-label classification. First, a multi-label ECG-based feature selection method is combined with a matrix decomposition and sparse learning theory. The optimal feature subset is selected as a preprocessing algorithm for ECG data. A multi-label classifier is then constructed by fusing CNN and RNN networks to fully exploit the interactions and features of the time and space dimensions. The experimental result demonstrates that the proposed method can achieve a state-of-the-art performance compared to other algorithms in multi-label database experiments.
通过心电图(ECG)自动诊断心律失常存在三个主要挑战:个体患者之间存在显著差异、ECG信号存在多种病变以及用相应标签标注临床ECG的成本高昂。传统的ECG处理方法严重依赖先验知识,例如来自特征提取和波形分析的知识。对先验知识进行预处理会产生计算开销。此外,标准的深度学习方法没有充分考虑ECG数据的动态时间、空间和多标签特征。在临床ECG波形中,经常会出现多标签情况,即一个患者被标注为多种心律失常类别。然而,当前研究中的多类方法主要解决多标签机器学习问题,忽略了疾病之间的相关性,导致信息丢失。本文提出了一种名为多标签融合深度学习的心律失常检测和分类方案。目标是构建一个具有自动特征学习能力的统一系统,支持有效的多标签分类。首先,将基于多标签ECG的特征选择方法与矩阵分解和稀疏学习理论相结合。选择最优特征子集作为ECG数据的预处理算法。然后通过融合CNN和RNN网络构建多标签分类器,以充分利用时间和空间维度的相互作用和特征。实验结果表明,与多标签数据库实验中的其他算法相比,该方法能够实现最优性能。