Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, 541004, PR China.
Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, 541004, PR China.
Med Eng Phys. 2024 Aug;130:104196. doi: 10.1016/j.medengphy.2024.104196. Epub 2024 Jun 15.
The 12-lead electrocardiogram (ECG) is widely used for diagnosing cardiovascular diseases in clinical practice. Recently, deep learning methods have become increasingly effective for automatically classifying ECG signals. However, most current research simply combines the 12-lead ECG signals into a matrix without fully considering the intrinsic relationships between the leads and the heart's structure. To better utilize medical domain knowledge, we propose a multi-branch network for multi-label ECG classification and introduce an intuitive and effective lead grouping strategy. Correspondingly, we design multi-branch networks where each branch employs a multi-scale convolutional network structure to extract more comprehensive features, with each branch corresponding to a lead combination. To better integrate features from different leads, we propose a feature weighting fusion module. We evaluate our method on the PTB-XL dataset for classifying 4 arrhythmia types and normal rhythm, and on the China Physiological Signal Challenge 2018 (CPSC2018) database for classifying 8 arrhythmia types and normal rhythm. Experimental results on multiple multi-label datasets demonstrate that our proposed multi-branch network outperforms state-of-the-art networks in multi-label classification tasks.
十二导联心电图(ECG)在临床实践中被广泛用于诊断心血管疾病。最近,深度学习方法在自动分类 ECG 信号方面变得越来越有效。然而,大多数当前的研究只是将 12 导联 ECG 信号组合成一个矩阵,而没有充分考虑导联与心脏结构之间的内在关系。为了更好地利用医学领域的知识,我们提出了一种用于多标签 ECG 分类的多分支网络,并引入了直观有效的导联分组策略。相应地,我们设计了多分支网络,其中每个分支采用多尺度卷积网络结构来提取更全面的特征,每个分支对应于一个导联组合。为了更好地整合来自不同导联的特征,我们提出了一个特征加权融合模块。我们在 PTB-XL 数据集上评估了我们的方法,用于分类 4 种心律失常类型和正常节律,以及在中国生理信号挑战赛 2018(CPSC2018)数据库上评估了用于分类 8 种心律失常类型和正常节律的方法。在多个多标签数据集上的实验结果表明,我们提出的多分支网络在多标签分类任务中优于最先进的网络。