Faynus Mohamed A, Bailey Jeffrey K, Pennington Britney O, Katsura Mika, Proctor Duncan A, Yeh Ashley K, Menon Sneha, Choi Dylan G, Lebkowski Jane S, Johnson Lincoln V, Clegg Dennis O
Program for Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA.
Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
Bioengineering (Basel). 2022 Jul 4;9(7):297. doi: 10.3390/bioengineering9070297.
Dry age-related macular degeneration (AMD) is estimated to impact nearly 300 million individuals globally by 2040. While no treatment options are currently available, multiple clinical trials investigating retinal pigmented epithelial cells derived from human pluripotent stem cells (hPSC-RPE) as a cellular replacement therapeutic are currently underway. It has been estimated that a production capacity of >109 RPE cells annually would be required to treat the afflicted population, but current manufacturing protocols are limited, being labor-intensive and time-consuming. Microcarrier technology has enabled high-density propagation of many adherent mammalian cell types via monolayer culture on surfaces of uM-diameter matrix spheres; however, few studies have explored microcarrier-based culture of RPE cells. Here, we provide an approach to the growth, maturation, and differentiation of hPSC-RPE cells on Cytodex 1 (C1) and Cytodex 3 (C3) microcarriers. We demonstrate that hPSC-RPE cells adhere to microcarriers coated with Matrigel, vitronectin or collagen, and mature in vitro to exhibit characteristic epithelial cell morphology and pigmentation. Microcarrier-grown hPSC-RPE cells (mcRPE) are viable; metabolically active; express RPE signature genes including BEST1, RPE65, TYRP1, and PMEL17; secrete the trophic factors PEDF and VEGF; and demonstrate phagocytosis of photoreceptor outer segments. Furthermore, we show that undifferentiated hESCs also adhere to Matrigel-coated microcarriers and are amenable to directed RPE differentiation. The capacity to support hPSC-RPE cell cultures using microcarriers enables efficient large-scale production of therapeutic RPE cells sufficient to meet the treatment demands of a large AMD patient population.
据估计,到2040年,干性年龄相关性黄斑变性(AMD)将影响全球近3亿人。虽然目前尚无治疗方案,但多项临床试验正在研究将源自人类多能干细胞的视网膜色素上皮细胞(hPSC-RPE)作为细胞替代疗法。据估计,每年需要>109个RPE细胞的生产能力才能治疗患病人群,但目前的制造方案有限,既劳动密集又耗时。微载体技术通过在微米直径的基质球表面进行单层培养,实现了许多贴壁哺乳动物细胞类型的高密度增殖;然而,很少有研究探索基于微载体的RPE细胞培养。在这里,我们提供了一种在Cytodex 1(C1)和Cytodex 3(C3)微载体上培养hPSC-RPE细胞、使其成熟和分化的方法。我们证明,hPSC-RPE细胞可粘附于涂有基质胶、玻连蛋白或胶原蛋白的微载体上,并在体外成熟,呈现出特征性的上皮细胞形态和色素沉着。在微载体上生长的hPSC-RPE细胞(mcRPE)具有活力;代谢活跃;表达包括BEST1、RPE65、TYRP1和PMEL17在内的RPE特征基因;分泌营养因子PEDF和VEGF;并表现出对视锥细胞外节的吞噬作用。此外,我们表明未分化的人胚胎干细胞也可粘附于涂有基质胶的微载体上,并易于定向分化为RPE细胞。使用微载体支持hPSC-RPE细胞培养的能力能够高效大规模生产治疗性RPE细胞,足以满足大量AMD患者的治疗需求。