Yuan Ye, Luo Xin, Shang Mingsheng, Wang Zidong
IEEE Trans Cybern. 2023 Sep;53(9):5788-5801. doi: 10.1109/TCYB.2022.3185117. Epub 2023 Aug 17.
With the rapid development of services computing in the past decade, Quality-of-Service (QoS)-aware selection of Web services has become a hot yet thorny issue. Conducting warming-up tests on a large set of candidate services for QoS evaluation is time consuming and expensive, making it vital to implement accurate QoS-estimators. Existing QoS-estimators barely consider the temporal patterns hidden in QoS data. However, such data are naturally time dependent. For addressing this critical issue, this study presents a Kalman-filter-incorporated latent factor analysis (KLFA)-based QoS-estimator for accurate representation to temporally dynamic QoS data. Its main idea is to make the user latent features (LFs) time dependent, while the service ones time consistent. A novel iterative training scheme is designed, where the user LFs are learned through a Kalman filter for precisely modeling the temporal patterns, and the service ones are alternatively trained via an alternating least squares algorithm for precisely representing the historical QoS data. Empirical studies on large-scale and real Web service QoS datasets demonstrate that the proposed KLFA model significantly outperforms state-of-the-art QoS-estimators in estimation accuracy for dynamic QoS data.
在过去十年中,随着服务计算的迅速发展,面向服务质量(QoS)的Web服务选择已成为一个热门但棘手的问题。对大量候选服务进行热身测试以评估QoS既耗时又昂贵,因此实现精确的QoS估计器至关重要。现有的QoS估计器几乎没有考虑隐藏在QoS数据中的时间模式。然而,此类数据本质上是随时间变化的。为了解决这一关键问题,本研究提出了一种基于卡尔曼滤波的潜在因子分析(KLFA)的QoS估计器,用于精确表示随时间动态变化的QoS数据。其主要思想是使用户潜在特征(LF)随时间变化,而服务潜在特征保持时间一致性。设计了一种新颖的迭代训练方案,其中通过卡尔曼滤波器学习用户LF以精确建模时间模式,通过交替最小二乘算法交替训练服务LF以精确表示历史QoS数据。对大规模真实Web服务QoS数据集的实证研究表明,所提出的KLFA模型在动态QoS数据的估计精度方面显著优于现有QoS估计器。