Suppr超能文献

通过聚合非负潜在因子模型生成高度准确的缺失 QoS 数据预测。

Generating Highly Accurate Predictions for Missing QoS Data via Aggregating Nonnegative Latent Factor Models.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):524-37. doi: 10.1109/TNNLS.2015.2412037. Epub 2015 Apr 22.

Abstract

Automatic Web-service selection is an important research topic in the domain of service computing. During this process, reliable predictions for quality of service (QoS) based on historical service invocations are vital to users. This work aims at making highly accurate predictions for missing QoS data via building an ensemble of nonnegative latent factor (NLF) models. Its motivations are: 1) the fulfillment of nonnegativity constraints can better represent the positive value nature of QoS data, thereby boosting the prediction accuracy and 2) since QoS prediction is a learning task, it is promising to further improve the prediction accuracy with a carefully designed ensemble model. To achieve this, we first implement an NLF model for QoS prediction. This model is then diversified through feature sampling and randomness injection to form a diversified NLF model, based on which an ensemble is built. Comparison results between the proposed ensemble and several widely employed and state-of-the-art QoS predictors on two large, real data sets demonstrate that the former can outperform the latter well in terms of prediction accuracy.

摘要

自动 Web 服务选择是服务计算领域的一个重要研究课题。在这个过程中,基于历史服务调用的可靠服务质量(QoS)预测对用户至关重要。这项工作旨在通过构建非负潜在因素(NLF)模型的集成来对缺失的 QoS 数据进行高度准确的预测。其动机是:1)满足非负约束可以更好地表示 QoS 数据的正值性质,从而提高预测精度;2)由于 QoS 预测是一项学习任务,因此可以通过精心设计的集成模型进一步提高预测精度。为了实现这一目标,我们首先为 QoS 预测实现了一个 NLF 模型。然后,通过特征采样和随机性注入对该模型进行多样化,形成多样化的 NLF 模型,在此基础上构建一个集成。在两个大型真实数据集上,将所提出的集成与几种广泛使用的最新 QoS 预测器进行比较的结果表明,前者在预测精度方面明显优于后者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验