Suppr超能文献

用于从烟道气中捕获二氧化碳的金属有机框架膜的大规模筛选与机器学习

Large-Scale Screening and Machine Learning for Metal-Organic Framework Membranes to Capture CO from Flue Gas.

作者信息

Situ Yizhen, Yuan Xueying, Bai Xiangning, Li Shuhua, Liang Hong, Zhu Xin, Wang Bangfen, Qiao Zhiwei

机构信息

Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China.

出版信息

Membranes (Basel). 2022 Jul 11;12(7):700. doi: 10.3390/membranes12070700.

Abstract

To combat global warming, as an energy-saving technology, membrane separation can be applied to capture CO from flue gas. Metal-organic frameworks (MOFs) with characteristics like high porosity have great potential as membrane materials for gas mixture separation. In this work, through a combination of grand canonical Monte Carlo and molecular dynamics simulations, the permeability of three gases (CO, N, and O) was calculated and estimated in 6013 computation-ready experimental MOF membranes (CoRE-MOFMs). Then, the relationship between structural descriptors and permeance performance, and the importance of available permeance area to permeance performance of gas molecules with smaller kinetic diameters were found by univariate analysis. Furthermore, comparing the prediction accuracy of seven classification machine learning algorithms, XGBoost was selected to analyze the order of importance of six structural descriptors to permeance performance, through which the conclusion of the univariate analysis was demonstrated one more time. Finally, seven promising CoRE-MOFMs were selected, and their structural characteristics were analyzed. This work provides explicit directions and powerful guidelines to experimenters to accelerate the research on membrane separation for the purification of flue gas.

摘要

为应对全球变暖,作为一种节能技术,膜分离可应用于从烟气中捕获一氧化碳。具有高孔隙率等特性的金属有机框架(MOF)作为气体混合物分离的膜材料具有巨大潜力。在这项工作中,通过巨正则蒙特卡罗和分子动力学模拟相结合的方法,在6013种可用于计算的实验性MOF膜(CoRE-MOFMs)中计算并估算了三种气体(一氧化碳、氮气和氧气)的渗透率。然后,通过单变量分析发现了结构描述符与渗透性能之间的关系,以及可用渗透面积对动力学直径较小的气体分子渗透性能的重要性。此外,通过比较七种分类机器学习算法的预测准确性,选择XGBoost来分析六个结构描述符对渗透性能的重要性顺序,从而再次证明了单变量分析的结论。最后,选择了七种有前景的CoRE-MOFMs,并分析了它们的结构特征。这项工作为实验人员提供了明确的方向和有力的指导方针,以加速烟气净化膜分离的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b8/9321510/2cad600fde45/membranes-12-00700-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验