Suppr超能文献

非晶态工程驱动d轨道高自旋构型实现近100%氧介导的类芬顿反应。

Amorphous Engineering Driving d-Orbital High Spin Configuration for Almost 100% O-Mediated Fenton-Like Reactions.

作者信息

Qi Juanjuan, Bai Qian, Bai Xiuhui, Gu Hongfei, Lu Siyue, Chen Siyang, Li Qiangwei, Yang Xudong, Wang Jianhui, Wang Lidong

机构信息

MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Jul;12(28):e2503665. doi: 10.1002/advs.202503665. Epub 2025 Apr 26.

Abstract

The inherent atomic disorder in amorphous materials leads to unsaturated atomic sites or dangling bonds, effectively modulating the material's electronic states and rendering it an ideal platform for the growth of single atoms. Herein, the electronic structure of isolated cobalt atoms anchored on amorphous carbon nitride (Co-ACN) is modulated through a substrate amorphization engineering, enabling the thorough removal of pazufloxacin (PZF) in 1 min with a high reaction rate constant (k) of 3.504 min by peroxymonosulfate (PMS) activation. Experiments and theoretical calculations reveal that Co-ACN exhibited a higher coordination environment (Co-N) compared to crystalline Co-CCN (Co-N). Meanwhile, the t energy level enhancement of Co 3d orbital promotes electron transition from t to e, inducing more unpaired electrons and thereby driving the transition from a low-spin state (LS, t e ) to a high-spin state (HS, t e ). The HS Co-ACN optimized the d-band center, boosted the electronic transfer, and weakened the interaction between Co 3d and O 2p orbitals of HSO , thereby enabling nearly 100% selective singlet oxygen (O) generation, whereas Co-CCN yielded coexisting reactive oxygen species (ROS). This work opens up a new paradigm for regulating the electronic structure of single-atom catalysts at the atomic scale.

摘要

非晶态材料中固有的原子无序导致不饱和原子位点或悬键,有效地调节了材料的电子态,使其成为单原子生长的理想平台。在此,通过基底非晶化工程调控了锚定在非晶态氮化碳(Co-ACN)上的孤立钴原子的电子结构,使得过一硫酸盐(PMS)活化能够在1分钟内彻底去除帕珠沙星(PZF),反应速率常数(k)高达3.504 min 。实验和理论计算表明,与晶体Co-CCN(Co-N)相比,Co-ACN表现出更高的配位环境(Co-N)。同时,Co 3d轨道的t能级增强促进电子从t向e跃迁,诱导更多未成对电子,从而驱动从低自旋态(LS,t e )向高自旋态(HS,t e )的转变。HS Co-ACN优化了d带中心,促进了电子转移,削弱了HSO 中Co 3d与O 2p轨道之间的相互作用,从而实现了近100%的选择性单线态氧(O)生成,而Co-CCN产生了共存的活性氧物种(ROS)。这项工作为在原子尺度上调控单原子催化剂的电子结构开辟了新的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fd6/12302526/36210c912989/ADVS-12-2503665-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验