Department of Radiology, Adıyaman Training and Research Hospital, Turkey.
Department of Neurology, Adiyaman University Medicine Faculty, Adiyaman, Turkey.
Comput Methods Programs Biomed. 2022 Sep;224:107030. doi: 10.1016/j.cmpb.2022.107030. Epub 2022 Jul 16.
Parkinson's disease (PD) is a common neurological disorder with variable clinical manifestations and magnetic resonance imaging (MRI) findings. We propose a handcrafted image classification model that can accurately (i) classify different PD stages, (ii) detect comorbid dementia, and (iii) discriminate PD-related motor symptoms.
Selected image datasets from three PD studies were used to develop the classification model. Our proposed novel automated system was developed in four phases: (i) texture features are extracted from the non-fixed size patches. In the feature extraction phase, a pyramid histogram-oriented gradient (PHOG) image descriptor is used. (ii) In the feature selection phase, four feature selectors: neighborhood component analysis (NCA), Chi2, minimum redundancy maximum relevancy (mRMR), and ReliefF are used to generate four feature vectors. (iii) Two classifiers: k-nearest neighbor (kNN) and support vector machine (SVM) are used in the classification step. A ten-fold cross-validation technique is used to validate the results. (iv) Eight predicted vectors are generated using four selected feature vectors and two classifiers. Finally, iterative majority voting (IMV) is used to attain general classification results. Therefore, this model is named nested patch-PHOG-multiple feature selectors and multiple classifiers-IMV (NP-PHOG-MFSMCIMV).
Our presented NP-PHOG-MFSMCIMV model achieved 99.22, 98.70, and 99.53% accuracies for the collected PD stages, PD dementia, and PD symptoms classification datasets, respectively.
The obtained accuracies (over 98% for all states) demonstrated the performance of developed NP-PHOG-MFSMCIMV model in automated PD state classification.
帕金森病(PD)是一种常见的神经障碍,其临床表现和磁共振成像(MRI)结果各不相同。我们提出了一种手工制作的图像分类模型,可以准确地(i)对不同的 PD 阶段进行分类,(ii)检测并发痴呆,以及(iii)区分与 PD 相关的运动症状。
使用来自三项 PD 研究的选定图像数据集来开发分类模型。我们提出的新型自动化系统分四个阶段开发:(i)从非固定大小的斑块中提取纹理特征。在特征提取阶段,使用金字塔直方图方向梯度(PHOG)图像描述符。(ii)在特征选择阶段,使用四个特征选择器:邻域成分分析(NCA)、Chi2、最小冗余最大相关性(mRMR)和 ReliefF 生成四个特征向量。(iii)在分类步骤中使用两种分类器:k-最近邻(kNN)和支持向量机(SVM)。使用十折交叉验证技术验证结果。(iv)使用四个选择的特征向量和两个分类器生成八个预测向量。最后,使用迭代多数投票(IMV)获得一般分类结果。因此,该模型命名为嵌套斑块-PHOG-多特征选择器和多分类器-IMV(NP-PHOG-MFSMCIMV)。
我们提出的 NP-PHOG-MFSMCIMV 模型分别对收集的 PD 阶段、PD 痴呆和 PD 症状分类数据集实现了 99.22%、98.70%和 99.53%的准确率。
获得的准确率(所有状态均超过 98%)表明了所开发的 NP-PHOG-MFSMCIMV 模型在自动 PD 状态分类中的性能。