Suppr超能文献

KSTAR:一种从磷酸蛋白质组学数据预测患者特异性激酶活性的算法。

KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data.

机构信息

University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903, USA.

Department of Medicine and Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63108, USA.

出版信息

Nat Commun. 2022 Jul 25;13(1):4283. doi: 10.1038/s41467-022-32017-5.

Abstract

Kinase inhibitors as targeted therapies have played an important role in improving cancer outcomes. However, there are still considerable challenges, such as resistance, non-response, patient stratification, polypharmacology, and identifying combination therapy where understanding a tumor kinase activity profile could be transformative. Here, we develop a graph- and statistics-based algorithm, called KSTAR, to convert phosphoproteomic measurements of cells and tissues into a kinase activity score that is generalizable and useful for clinical pipelines, requiring no quantification of the phosphorylation sites. In this work, we demonstrate that KSTAR reliably captures expected kinase activity differences across different tissues and stimulation contexts, allows for the direct comparison of samples from independent experiments, and is robust across a wide range of dataset sizes. Finally, we apply KSTAR to clinical breast cancer phosphoproteomic data and find that there is potential for kinase activity inference from KSTAR to complement the current clinical diagnosis of HER2 status in breast cancer patients.

摘要

激酶抑制剂作为靶向治疗在改善癌症预后方面发挥了重要作用。然而,仍然存在许多挑战,如耐药性、无反应、患者分层、多药理学以及确定联合治疗,其中了解肿瘤激酶活性谱可能具有变革性。在这里,我们开发了一种基于图和统计的算法,称为 KSTAR,将细胞和组织的磷酸化蛋白质组学测量转化为激酶活性评分,该评分具有通用性,可用于临床管道,无需对磷酸化 位点进行定量。在这项工作中,我们证明 KSTAR 可靠地捕获了不同组织和刺激环境中预期的激酶活性差异,允许对来自独立实验的样本进行直接比较,并且在广泛的数据集大小范围内具有稳健性。最后,我们将 KSTAR 应用于临床乳腺癌磷酸蛋白质组学数据,发现从 KSTAR 推断激酶活性有可能补充目前乳腺癌患者 HER2 状态的临床诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfd/9314348/bccda6d3d21b/41467_2022_32017_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验