Suppr超能文献

一种利用翻译后修饰谱数据推断酶活性的计算工具。

A computational tool to infer enzyme activity using post-translational modification profiling data.

作者信息

Kong Dehui, Zhang Aijun, Li Ling, Yuan Zuo-Fei, Fu Yingxue, Wu Long, Mishra Ashutosh, High Anthony A, Peng Junmin, Wang Xusheng

机构信息

Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.

Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.

出版信息

Commun Biol. 2025 Jan 21;8(1):103. doi: 10.1038/s42003-025-07548-4.

Abstract

Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data. To address this challenge, we introduce enzyme activity inference with structural equation modeling under the JUMP umbrella (JUMPsem), a novel computational tool designed to infer enzyme activity using PTM profiling data. We demonstrate that the JUMPsem program enables estimating kinase activities using phosphoproteome data, ubiquitin E3 ligase activities from the ubiquitinome, and histone acetyltransferase (HAT) activities based on the acetylome. In addition, JUMPsem is capable of establishing novel enzyme-substrate relationships through searching motif sequences. JUMPsem outperforms widely used kinase activity tools, such as IKAP and KSEA, in terms of the number of kinases and the computational speed. The JUMPsem program is scalable and publicly available as an open-source R package and user-friendly web-based R/Shiny app. Collectively, JUMPsem provides an improved tool for inferring protein enzyme activities, potentially facilitating targeted drug development.

摘要

酶在通过信号转导途径协调细胞对外部刺激和环境变化的复杂反应中起着关键作用。尽管它们起着至关重要的作用,但与通过高通量蛋白质组学测量蛋白质丰度不同,测量酶活性通常是间接的,并且规模较小。此外,从全蛋白质组的翻译后修饰(PTM)谱数据中推导酶的活性具有挑战性。为了应对这一挑战,我们引入了在JUMP框架下使用结构方程模型进行酶活性推断(JUMPsem),这是一种旨在使用PTM谱数据推断酶活性的新型计算工具。我们证明,JUMPsem程序能够使用磷酸化蛋白质组数据估计激酶活性,从泛素组数据估计泛素E3连接酶活性,以及基于乙酰化蛋白质组数据估计组蛋白乙酰转移酶(HAT)活性。此外,JUMPsem能够通过搜索基序序列建立新的酶-底物关系。在激酶数量和计算速度方面,JUMPsem优于广泛使用的激酶活性工具,如IKAP和KSEA。JUMPsem程序是可扩展的,作为开源R包和用户友好的基于网络的R/Shiny应用程序公开可用。总的来说,JUMPsem为推断蛋白质酶活性提供了一种改进的工具,可能有助于靶向药物开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5234/11751189/13c7dd462254/42003_2025_7548_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验