Chemistry Department, Federal University of Espírito Santo, Vitória, ES 29040-090, Brazil.
Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES 29040-090, Brazil.
J Proteome Res. 2022 Aug 5;21(8):1868-1875. doi: 10.1021/acs.jproteome.2c00148. Epub 2022 Jul 25.
Rapid identification of existing respiratory viruses in biological samples is of utmost importance in strategies to combat pandemics. Inputting MALDI FT-ICR MS (matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry) data output into machine learning algorithms could hold promise in classifying positive samples for SARS-CoV-2. This study aimed to develop a fast and effective methodology to perform saliva-based screening of patients with suspected COVID-19, using the MALDI FT-ICR MS technique with a support vector machine (SVM). In the method optimization, the best sample preparation was obtained with the digestion of saliva in 10 μL of trypsin for 2 h and the MALDI analysis, which presented a satisfactory resolution for the analysis with 1 M. SVM models were created with data from the analysis of 97 samples that were designated as SARS-CoV-2 positives versus 52 negatives, confirmed by RT-PCR tests. SVM1 and SVM2 models showed the best results. The calibration group obtained 100% accuracy, and the test group 95.6% (SVM1) and 86.7% (SVM2). SVM1 selected 780 variables and has a false negative rate (FNR) of 0%, while SVM2 selected only two variables with a FNR of 3%. The proposed methodology suggests a promising tool to aid screening for COVID-19.
在对抗大流行的策略中,快速鉴定生物样本中现有的呼吸道病毒至关重要。将 MALDI FT-ICR MS(基质辅助激光解吸/电离傅里叶变换离子回旋共振质谱)数据输入机器学习算法,可能有助于对 SARS-CoV-2 阳性样本进行分类。本研究旨在开发一种快速有效的方法,使用 MALDI FT-ICR MS 技术和支持向量机 (SVM) 对疑似 COVID-19 的患者进行唾液筛查。在方法优化中,通过在 10 μL 胰蛋白酶中消化唾液 2 小时并进行 MALDI 分析,获得了最佳的样品制备方法,该方法对 1 M 的分析具有令人满意的分辨率。使用 97 个样本的分析数据(通过 RT-PCR 测试指定为 SARS-CoV-2 阳性与 52 个阴性)创建了 SVM 模型。SVM1 和 SVM2 模型表现出最佳结果。校准组的准确率达到 100%,测试组的准确率为 95.6%(SVM1)和 86.7%(SVM2)。SVM1 选择了 780 个变量,假阴性率(FNR)为 0%,而 SVM2 仅选择了两个变量,FNR 为 3%。该方法为 COVID-19 的筛查提供了一种很有前途的工具。