Suppr超能文献

评估 AlphaFold 2 在环结构预测中的准确性。

Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction.

机构信息

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.

Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Biomolecules. 2022 Jul 14;12(7):985. doi: 10.3390/biom12070985.

Abstract

The inhibition of protein-protein interactions is a growing strategy in drug development. In addition to structured regions, many protein loop regions are involved in protein-protein interactions and thus have been identified as potential drug targets. To effectively target such regions, protein structure is critical. Loop structure prediction is a challenging subgroup in the field of protein structure prediction because of the reduced level of conservation in protein sequences compared to the secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in 2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting protein loop regions. We have constructed an independent dataset of 31,650 loop regions from 2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation (RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see that as the number of residues in a given loop increases, the accuracy of AlphaFold 2's prediction decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands in proteins.

摘要

蛋白质-蛋白质相互作用的抑制是药物开发中一个不断发展的策略。除了结构区域外,许多蛋白质环区都参与蛋白质-蛋白质相互作用,因此被认为是潜在的药物靶点。为了有效地靶向这些区域,蛋白质结构是至关重要的。与二级结构元件相比,蛋白质序列的保守程度较低,因此环结构预测是蛋白质结构预测领域中的一个具有挑战性的子领域。AlphaFold 2 被认为是蛋白质结构预测领域的最伟大成就之一。在 2020 年的蛋白质结构预测关键评估 (Critical Assessment of protein Structure Prediction,CASP 14) 竞赛中,AlphaFold 2 预测的蛋白质结构接近 X 射线分辨率。本工作的目的是调查 AlphaFold 2 专门预测蛋白质环区的性能。我们构建了一个独立的数据集,其中包含 31650 个来自 2613 个蛋白质的环区(在 AlphaFold 2 训练后),这些蛋白质具有实验确定的结构和 AlphaFold 2 预测的结构。通过使用我们的数据集进行广泛评估,结果表明 AlphaFold 2 是环区结构的良好预测器,特别是对于短环区。长度小于 10 个残基的环区的平均均方根偏差 (Root Mean Square Deviation,RMSD) 为 0.33Å,平均模板建模评分 (Template Modeling score,TM-score) 为 0.82。然而,我们发现,随着给定环区中残基数量的增加,AlphaFold 2 预测的准确性降低。长度大于 20 个残基的环区的平均 RMSD 为 2.04Å,平均 TM-score 为 0.55。这种准确性与环区长度之间的相关性与灵活性的增加直接相关。此外,AlphaFold 2 略微高估了蛋白质中的α-螺旋和β-折叠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d155/9312937/7c37584a0769/biomolecules-12-00985-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验