Suppr超能文献

AlphaFold、RoseTTAFold 和 Modeller 的比较研究:涉及 G 蛋白偶联受体应用的案例研究。

Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors.

机构信息

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac308.

Abstract

Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-coupled receptor (GPCR) proteins are particularly interesting since they are involved in numerous pathways. This work directly compares the performance of these novel deep learning-based protein modeling methods for GPCRs with the most widely used template-based software-Modeller. We collected the experimentally determined structures of 73 GPCRs from the Protein Data Bank. The official AlphaFold repository and RoseTTAFold web service were used with default settings to predict five structures of each protein sequence. The predicted models were then aligned with the experimentally solved structures and evaluated by the root-mean-square deviation (RMSD) metric. If only looking at each program's top-scored structure, Modeller had the smallest average modeling RMSD of 2.17 Å, which is better than AlphaFold's 5.53 Å and RoseTTAFold's 6.28 Å, probably since Modeller already included many known structures as templates. However, the NN-based methods (AlphaFold and RoseTTAFold) outperformed Modeller in 21 and 15 out of the 73 cases with the top-scored model, respectively, where no good templates were available for Modeller. The larger RMSD values generated by the NN-based methods were primarily due to the differences in loop prediction compared to the crystal structures.

摘要

近年来,基于神经网络(NN)的蛋白质建模方法有了显著的改进。虽然基于非同源建模方法 AlphaFold 和 RoseTTAFold 的整体准确性非常出色,但它们对特定蛋白质家族的性能仍未得到检验。G 蛋白偶联受体(GPCR)蛋白特别有趣,因为它们涉及到许多途径。这项工作直接比较了这些新的基于深度学习的蛋白质建模方法在 GPCR 方面的性能与最广泛使用的基于模板的软件 Modeller。我们从蛋白质数据库中收集了 73 种 GPCR 的实验确定结构。使用默认设置,从官方的 AlphaFold 存储库和 RoseTTAFold 网络服务中,分别预测了每个蛋白质序列的五个结构。然后,将预测的模型与实验确定的结构对齐,并通过均方根偏差(RMSD)度量进行评估。如果只看每个程序的得分最高的结构,Modeller 的平均建模 RMSD 最小,为 2.17 Å,优于 AlphaFold 的 5.53 Å 和 RoseTTAFold 的 6.28 Å,这可能是因为 Modeller 已经包含了许多已知的结构作为模板。然而,在没有可用的好模板的情况下,基于 NN 的方法(AlphaFold 和 RoseTTAFold)在 73 个案例中的 21 个和 15 个案例中,分别以得分最高的模型优于 Modeller。基于 NN 的方法生成的 RMSD 值较大主要是由于与晶体结构相比,循环预测的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f62/9487610/34561f5abfe5/bbac308f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验