Suppr超能文献

DeepLBCEPred:一种基于双向长短期记忆网络和多尺度卷积神经网络的预测线性B细胞表位的深度学习方法。

DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes.

作者信息

Qi Yue, Zheng Peijie, Huang Guohua

机构信息

School of Information Engineering, Shaoyang University, Shaoyang, Hunan, China.

出版信息

Front Microbiol. 2023 Feb 22;14:1117027. doi: 10.3389/fmicb.2023.1117027. eCollection 2023.

Abstract

The epitope is the site where antigens and antibodies interact and is vital to understanding the immune system. Experimental identification of linear B-cell epitopes (BCEs) is expensive, is labor-consuming, and has a low throughput. Although a few computational methods have been proposed to address this challenge, there is still a long way to go for practical applications. We proposed a deep learning method called DeepLBCEPred for predicting linear BCEs, which consists of bi-directional long short-term memory (Bi-LSTM), feed-forward attention, and multi-scale convolutional neural networks (CNNs). We extensively tested the performance of DeepLBCEPred through cross-validation and independent tests on training and two testing datasets. The empirical results showed that the DeepLBCEPred obtained state-of-the-art performance. We also investigated the contribution of different deep learning elements to recognize linear BCEs. In addition, we have developed a user-friendly web application for linear BCEs prediction, which is freely available for all scientific researchers at: http://www.biolscience.cn/DeepLBCEPred/.

摘要

表位是抗原与抗体相互作用的部位,对于理解免疫系统至关重要。线性B细胞表位(BCE)的实验鉴定成本高昂、耗费人力且通量较低。尽管已经提出了一些计算方法来应对这一挑战,但在实际应用方面仍有很长的路要走。我们提出了一种名为DeepLBCEPred的深度学习方法来预测线性BCE,该方法由双向长短期记忆(Bi-LSTM)、前馈注意力和多尺度卷积神经网络(CNN)组成。我们通过在训练数据集和两个测试数据集上进行交叉验证和独立测试,广泛测试了DeepLBCEPred的性能。实证结果表明,DeepLBCEPred取得了领先的性能。我们还研究了不同深度学习元素对识别线性BCE的贡献。此外,我们开发了一个用户友好的用于线性BCE预测的网络应用程序,所有科研人员均可免费访问:http://www.biolscience.cn/DeepLBCEPred/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f09/9992402/23b822c6e381/fmicb-14-1117027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验