Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France.
Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France.
Cells. 2022 Jul 8;11(14):2149. doi: 10.3390/cells11142149.
AsiDNA is a DNA repair inhibitor mimicking DNA double-strand breaks (DSB) that was designed to disorganize DSB repair pathways to sensitize tumors to DNA damaging therapies such as radiotherapy and chemotherapy. We used the property of AsiDNA of triggering artificial DNA damage signaling to examine the activation of DSB repair pathways and to study the main steps of inhibition of DNA repair foci after irradiation. We show that, upon AsiDNA cellular uptake, cytoplasmic ATM and PARP are rapidly activated (within one hour) even in the absence of irradiation. ATM activation by AsiDNA leads to its transient autophosphorylation and sequestration in the cytoplasm, preventing the formation of ATM nuclear foci on irradiation-induced damage. In contrast, the activation of PARP did not seem to alter its ability to form DNA repair foci, but prevented 53BP1 and XRCC4 recruitment at the damage sites. In the nucleus, AsiDNA is essentially associated with DNA-PK, which triggers its activation leading to phosphorylation of H2AX all over chromatin. This pan-nuclear phosphorylation of H2AX correlates with the massive inhibition, at damage sites induced by irradiation, of the recruitment of repair enzymes involved in DSB repair by homologous recombination and nonhomologous end joining. These results highlight the interest in a new generation of DNA repair inhibitors targeting DNA damage signaling.
AsiDNA 是一种模拟 DNA 双链断裂 (DSB) 的 DNA 修复抑制剂,旨在扰乱 DSB 修复途径,使肿瘤对放射治疗和化学治疗等 DNA 损伤疗法敏感。我们利用 AsiDNA 触发人工 DNA 损伤信号的特性,研究了 DSB 修复途径的激活以及照射后 DNA 修复焦点抑制的主要步骤。我们发现,AsiDNA 进入细胞后,即使没有照射,细胞质中的 ATM 和 PARP 也会迅速被激活(在一小时内)。AsiDNA 对 ATM 的激活导致其短暂的自身磷酸化和在细胞质中的隔离,从而阻止 ATM 核焦点在照射诱导的损伤上形成。相比之下,PARP 的激活似乎并没有改变其形成 DNA 修复焦点的能力,但阻止了 53BP1 和 XRCC4 在损伤部位的募集。在核内,AsiDNA 主要与 DNA-PK 相关联,后者触发其激活,导致组蛋白上 H2AX 的磷酸化。这种全核 H2AX 的磷酸化与在照射诱导的损伤部位,涉及同源重组和非同源末端连接的 DSB 修复的修复酶的募集的大量抑制相关。这些结果突出了新一代针对 DNA 损伤信号的 DNA 修复抑制剂的重要性。