Group of Molecular and Industrial Biotechnology, Chemical Engineering, Universitat Politécnica de Catalunya, 08222 Terrassa, Spain.
Department of Earth and Environmental Sciences, Research Center POLARIA, Universita degli Studi di Milano-Bicocca, 20900 Milano, Italy.
Int J Mol Sci. 2022 Jul 7;23(14):7527. doi: 10.3390/ijms23147527.
Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.
多药耐药性是一个日益严重的医疗保健问题,与死亡率和发病率的增加以及巨大的财务负担有关。细菌经常形成生物膜群落,导致许多对传统抗生素具有耐药性的持续性感染。在此,使用高强度超声生成了负载天然杀菌剂法尼醇(FSL NPs)的新型纳米颗粒(NPs)。法尼醇的纳米制剂改善了其抗菌性能,并在不到 3 小时内完全消除了 ,而不会诱导耐药性的产生,并能够 100%抑制耐药性 的生物膜的建立。这些无抗生素的纳米抗菌剂还以非常低的活性剂浓度减少了成熟的生物膜。除了出色的抗菌性能外,所设计的纳米实体还表现出强大的抗病毒特性,并能抑制 SARS-CoV-2 的刺突蛋白高达 83%。新型 FSL NPs 不会引起皮肤组织刺激,也不会在 3D 皮肤组织模型中诱导抗炎细胞因子的分泌。这些结果支持这些基于生物的纳米活性剂替代现有抗生素的潜力,并且它们可用于开发用于控制微生物皮肤感染的局部药物产品,而不会诱导耐药性的产生。