Suppr超能文献

揭示生命的电子电路图:氧化还原酶中过渡金属结合位点的结构关系。

Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases.

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120257. doi: 10.1098/rstb.2012.0257. Print 2013 Jul 19.

Abstract

Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this 'composome' analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.

摘要

氧化还原酶在催化生命之树中跨越酶电子转移反应方面发挥着核心作用。首先,这些蛋白质的平衡热力学性质受与活性部位特定过渡金属和配体相关的蛋白质折叠控制。对全酶结构和功能的全局分析表明,基本的氧化还原酶少于约 500 种,可以进一步聚类为 35 个独特的组。这些催化剂在地球历史早期的原核生物中进化,并且在很大程度上负责地球上非平衡生物地球化学循环的出现。尽管由于基因复制和水平基因转移,氧化还原酶中氨基酸序列的进化历史非常难以重建,但催化部位折叠的进化可以潜在地用于推断这些酶的历史。我们使用一种新颖而简单的分析方法,分析氧化还原酶中与配体相关的二级结构,开发了这些酶的结构系统发育。这种“复合分析”的结果表明,它们从由环结构主导的一小组蛋白质的基本集合中早期分离出来,分为两类氧化还原酶,一类由α-螺旋主导,另一类由β-折叠主导。两个分支中的结构进化模式都追踪了活性部位的氧化还原梯度和氢键能量的增加。总体模式表明,氧化还原酶的进化导致过渡金属折叠中的熵在大约 25 亿年的时间内降低,从而使酶能够以高特异性使用越来越氧化的底物。

相似文献

1
Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120257. doi: 10.1098/rstb.2012.0257. Print 2013 Jul 19.
2
Evolutionary history of redox metal-binding domains across the tree of life.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):7042-7. doi: 10.1073/pnas.1403676111. Epub 2014 Apr 28.
3
Oxidoreductases and metal cofactors in the functioning of the earth.
Essays Biochem. 2023 Aug 11;67(4):653-670. doi: 10.1042/EBC20230012.
5
Modular origins of biological electron transfer chains.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1280-1285. doi: 10.1073/pnas.1714225115. Epub 2018 Jan 22.
6
TrAnsFuSE refines the search for protein function: oxidoreductases.
Integr Biol (Camb). 2012 Jul;4(7):765-77. doi: 10.1039/c2ib00131d. Epub 2012 Apr 5.
7
The interface between the biological and inorganic worlds: iron-sulfur metalloclusters.
Science. 2003 May 9;300(5621):929-31. doi: 10.1126/science.1083075.
8
The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere.
Annu Rev Microbiol. 2016 Sep 8;70:45-62. doi: 10.1146/annurev-micro-102215-095521. Epub 2016 Jun 8.
9
Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
FEBS J. 2006 Sep;273(18):4170-85. doi: 10.1111/j.1742-4658.2006.05421.x. Epub 2006 Aug 23.
10
Small protein folds at the root of an ancient metabolic network.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7193-7199. doi: 10.1073/pnas.1914982117. Epub 2020 Mar 18.

引用本文的文献

1
Deciphering enzymatic potential in metagenomic reads through DNA language models.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf836.
2
Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics.
iScience. 2024 Mar 25;27(5):109555. doi: 10.1016/j.isci.2024.109555. eCollection 2024 May 17.
3
Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology.
Front Chem. 2024 Feb 8;12:1349020. doi: 10.3389/fchem.2024.1349020. eCollection 2024.
4
Oxidoreductases and metal cofactors in the functioning of the earth.
Essays Biochem. 2023 Aug 11;67(4):653-670. doi: 10.1042/EBC20230012.
5
Mineral Element Insiders and Outliers Play Crucial Roles in Biological Evolution.
Life (Basel). 2022 Jun 24;12(7):951. doi: 10.3390/life12070951.
6
Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life.
Orig Life Evol Biosph. 2018 Jun;48(2):159-179. doi: 10.1007/s11084-018-9555-8. Epub 2018 Mar 3.
7
Modular origins of biological electron transfer chains.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1280-1285. doi: 10.1073/pnas.1714225115. Epub 2018 Jan 22.
8
Structural principles for computational and de novo design of 4Fe-4S metalloproteins.
Biochim Biophys Acta. 2016 May;1857(5):531-538. doi: 10.1016/j.bbabio.2015.10.001. Epub 2015 Oct 9.
9
An origin-of-life reactor to simulate alkaline hydrothermal vents.
J Mol Evol. 2014 Dec;79(5-6):213-27. doi: 10.1007/s00239-014-9658-4. Epub 2014 Nov 27.
10
The long goodbye: the rise and fall of flavodoxin during plant evolution.
J Exp Bot. 2014 Oct;65(18):5161-78. doi: 10.1093/jxb/eru273. Epub 2014 Jul 9.

本文引用的文献

1
The emergence and early evolution of biological carbon-fixation.
PLoS Comput Biol. 2012;8(4):e1002455. doi: 10.1371/journal.pcbi.1002455. Epub 2012 Apr 19.
2
Energetic selection of topology in ferredoxins.
PLoS Comput Biol. 2012;8(4):e1002463. doi: 10.1371/journal.pcbi.1002463. Epub 2012 Apr 5.
3
Detection of spatial correlations in protein structures and molecular complexes.
Structure. 2012 Apr 4;20(4):718-28. doi: 10.1016/j.str.2012.01.024. Epub 2012 Apr 3.
4
TrAnsFuSE refines the search for protein function: oxidoreductases.
Integr Biol (Camb). 2012 Jul;4(7):765-77. doi: 10.1039/c2ib00131d. Epub 2012 Apr 5.
6
Reorganizing the protein space at the Universal Protein Resource (UniProt).
Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5. doi: 10.1093/nar/gkr981. Epub 2011 Nov 18.
7
Mineral surfaces, geochemical complexities, and the origins of life.
Cold Spring Harb Perspect Biol. 2010 May;2(5):a002162. doi: 10.1101/cshperspect.a002162. Epub 2010 Apr 14.
8
Protein dynamism and evolvability.
Science. 2009 Apr 10;324(5924):203-7. doi: 10.1126/science.1169375.
9
The microbial engines that drive Earth's biogeochemical cycles.
Science. 2008 May 23;320(5879):1034-9. doi: 10.1126/science.1153213.
10
Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin.
Science. 2007 Nov 30;318(5855):1464-8. doi: 10.1126/science.1147753.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验