Canto Carles
Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015 Lausanne, Switzerland.
School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Metabolites. 2022 Jul 9;12(7):630. doi: 10.3390/metabo12070630.
The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD bioavailability. Among them, the dietary supplementation with NAD precursors-classically known as vitamin B3-has received most of the attention. Multiple molecules can act as NAD precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD precursors might serve specialized purposes.
在过去十年中,基于提高细胞内烟酰胺腺嘌呤二核苷酸(NAD)的生物可利用性,用于治疗代谢性疾病和与年龄相关疾病的治疗策略大量涌现。其中,通过膳食补充NAD前体(传统上称为维生素B3)受到了最多关注。多种分子可通过独立的生物合成途径充当NAD前体。有趣的是,真核生物保留了利用所有这些不同分子的显著能力,即使其中一些分子在自然界中很少见。在这里,我们讨论了在进化过程中保留所有这些生物合成途径的可能性,因为不同的NAD前体可能具有特定的用途。