微流控产生的纳米颗粒-蛋白质复合物的磁悬浮模式

Magnetic Levitation Patterns of Microfluidic-Generated Nanoparticle-Protein Complexes.

作者信息

Digiacomo Luca, Quagliarini Erica, Marmiroli Benedetta, Sartori Barbara, Perini Giordano, Papi Massimiliano, Capriotti Anna Laura, Montone Carmela Maria, Cerrato Andrea, Caracciolo Giulio, Pozzi Daniela

机构信息

NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.

Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria.

出版信息

Nanomaterials (Basel). 2022 Jul 11;12(14):2376. doi: 10.3390/nano12142376.

Abstract

Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)-protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this gap, here, we investigated the effect of total flow rate (TFR) and flow rate ratio (FRR) on the MagLev patterns of microfluidic-generated graphene oxide (GO)-protein complexes using bulk mixing of GO and human plasma (HP) as a reference. Levitating and precipitating fractions of GO-HP samples were characterized in terms of atomic force microscopy (AFM), bicinchoninic acid assay (BCA), and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE), and nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). We identified combinations of TFR and FRR (e.g., TFR = 35 μL/min and FRR (GO:HP) = 9:1 or TFR = 3.5 μL/min and FRR (GO:HP) = 19:1), leading to MagLev patterns dominated by levitating and precipitating fractions with bulk-like features. Since a typical MagLev experiment for disease detection is based on a sequence of optimization, exploration, and validation steps, this implies that the optimization (e.g., searching for optimal NP:HP ratios) and exploration (e.g., searching for MagLev signatures) steps can be performed using samples generated by bulk mixing. When these steps are completed, the validation step, which involves using human specimens that are often available in limited amounts, can be made by highly reproducible microfluidic mixing without any ex novo optimization process. The relevance of developing diagnostic technologies based on MagLev of coronated nanomaterials is also discussed.

摘要

磁悬浮(MagLev)最近已成为一种强大的方法,用于开发基于利用纳米颗粒(NP)-蛋白质冠的诊断技术。然而,改善该技术的稳健性、可重复性和准确性的实验程序在很大程度上尚未得到探索。为了填补这一空白,在此我们以氧化石墨烯(GO)与人类血浆(HP)的大量混合为参考,研究了总流速(TFR)和流速比(FRR)对微流控产生的氧化石墨烯-蛋白质复合物磁悬浮模式的影响。通过原子力显微镜(AFM)、二辛可宁酸测定法(BCA)、一维十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(1D SDS-PAGE)以及纳升液相色谱-串联质谱(nano-LC-MS/MS)对GO-HP样品的悬浮和沉淀部分进行了表征。我们确定了TFR和FRR的组合(例如,TFR = 35 μL/min且FRR(GO:HP)= 9:1或TFR = 3.5 μL/min且FRR(GO:HP)= 19:1),这些组合导致磁悬浮模式以具有块状特征的悬浮和沉淀部分为主。由于用于疾病检测的典型磁悬浮实验基于一系列优化、探索和验证步骤,这意味着优化步骤(例如寻找最佳NP:HP比率)和探索步骤(例如寻找磁悬浮特征)可以使用大量混合产生的样品来进行。当这些步骤完成后,涉及使用通常数量有限的人类标本的验证步骤,可以通过高度可重复的微流控混合来进行,而无需任何重新优化过程。还讨论了基于冠纳米材料磁悬浮开发诊断技术的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4c/9324036/a7c378347171/nanomaterials-12-02376-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索