Artchuea Thanphisit, Srikhaow Assadawoot, Sriprachuabwong Chakrit, Tuantranont Adisorn, Tang I-Ming, Pon-On Weeraphat
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand.
Nanomaterials (Basel). 2022 Jul 14;12(14):2403. doi: 10.3390/nano12142403.
Sulfur composites consisting of electrochemical reactive catalysts/conductive materials are investigated for use in lithium-sulfur (Li-S) batteries (LSBs). In this paper, we report the synthesis, physicochemical and electrochemical properties of CuZnS quantum dots (CZSQDs) decorated with nickel-cobalt-sulfide ((NiCo)-S)) mixed with reduced graphene oxide (rGO)/oxidized carbon nanotube (oxdCNT) (rGO/oxdCNT) ((NiCo)-S@rGO/oxdCNT) composites. These composites are for the purpose of being the sulfur host cathode in Li-S batteries. The as-prepared composites showed a porous structure with the CZSQDs being uniformly found on the surface of the rGO/oxdCNT, which had a specific surface area of 26.54 m/g. Electrochemical studies indicated that the (NiCo)-S@rGO/oxdCNT cells forming the cathode exhibited a maximum capacity of 1154.96 mAhg with the initial discharge at 0.1 C. The smaller size of the CZSQDs (~10 nm) had a positive effect on the CZSQDs@(NiCo)-S@rGO/oxdCNT composites in that they had a higher initial discharge capacity of 1344.18 mAhg at 0.1 C with the Coulombic efficiency being maintained at almost 97.62% during cycling. This latter property is approximately 1.16 times more compared to the absence of the Cu-Zn-S QD loading. This study shows that the CuZnS quantum dots decorated with a (NiCo)-S@rGO/oxdCNT supporting matrix-based sulfur cathode have the potential to improve the performance of future lithium-sulfur batteries.
对由电化学反应催化剂/导电材料组成的硫复合材料在锂硫(Li-S)电池(LSB)中的应用进行了研究。在本文中,我们报告了用镍钴硫化物((NiCo)-S)修饰的硫化铜锌量子点(CZSQDs)与还原氧化石墨烯(rGO)/氧化碳纳米管(oxdCNT)(rGO/oxdCNT)((NiCo)-S@rGO/oxdCNT)复合材料的合成、物理化学和电化学性质。这些复合材料旨在用作锂硫电池中的硫主体阴极。所制备的复合材料呈现出多孔结构,CZSQDs均匀地分布在rGO/oxdCNT表面,其比表面积为26.54 m/g。电化学研究表明,形成阴极的(NiCo)-S@rGO/oxdCNT电池在0.1 C下首次放电时的最大容量为1154.96 mAhg。较小尺寸的CZSQDs(~10 nm)对CZSQDs@(NiCo)-S@rGO/oxdCNT复合材料有积极影响,因为它们在0.1 C下具有更高的首次放电容量1344.18 mAhg,并且在循环过程中库仑效率几乎保持在97.62%。与未负载铜锌硫量子点相比,后一种性能约高出1.16倍。这项研究表明,用基于(NiCo)-S@rGO/oxdCNT支撑基质的硫阴极修饰的硫化铜锌量子点有潜力提高未来锂硫电池的性能。