Suppr超能文献

基于多衰减因子卡尔曼滤波器的组合导航算法

Integrated Navigation Algorithm Based on Multiple Fading Factors Kalman Filter.

作者信息

Sun Bo, Zhang Zhenwei, Liu Shicai, Yan Xiaobing, Yang Chengxu

机构信息

College of Intelligent Equipment, Shandong University of Science and Technology, Tai'an 271019, China.

College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Sensors (Basel). 2022 Jul 6;22(14):5081. doi: 10.3390/s22145081.

Abstract

An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.

摘要

提出了一种基于多衰落因子卡尔曼滤波器(MFKF)的组合导航算法,以解决卡尔曼滤波(KF)算法在模型失配或噪声较大时容易出现发散,以及衰落因子过度使用时MFKF精度降低的问题。该算法基于新息协方差理论,设计了一种改进的滤波异常判断依据,并通过切换滤波状态使衰落因子的引入时机更加合理。与传统的滤波异常判断依据不同,改进后的判断依据采用递归方式不断更新新息协方差的估计值,以提高新息协方差的估计精度,并为判断依据引入了一个经验储备因子以适应实际工程应用。通过建立惯性导航系统(INS)/全球导航卫星系统(GNSS)组合导航模型,结果表明,与KF和MFKF相比,所提算法的平均定位精度分别提高了26.52%和7.48%,并具有更好的鲁棒性和自适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a3f/9319541/b0937f0bb35c/sensors-22-05081-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验