Suppr超能文献

基于正电子发射断层扫描/计算机断层扫描的肿瘤病变智能标记

Intelligent Labeling of Tumor Lesions Based on Positron Emission Tomography/Computed Tomography.

机构信息

School of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China.

International Science and Technology Cooperation Base of Zhejiang Province: Remote Sensing Image Processing and Application, Hangzhou 310015, China.

出版信息

Sensors (Basel). 2022 Jul 10;22(14):5171. doi: 10.3390/s22145171.

Abstract

Positron emission tomography/computed tomography (PET/CT) plays a vital role in diagnosing tumors. However, PET/CT imaging relies primarily on manual interpretation and labeling by medical professionals. An enormous workload will affect the training samples' construction for deep learning. The labeling of tumor lesions in PET/CT images involves the intersection of computer graphics and medicine, such as registration, a fusion of medical images, and labeling of lesions. This paper extends the linear interpolation, enhances it in a specific area of the PET image, and uses the outer frame scaling of the PET/CT image and the least-squares residual affine method. The PET and CT images are subjected to wavelet transformation and then synthesized in proportion to form a PET/CT fusion image. According to the absorption of 18F-FDG (fluoro deoxy glucose) SUV in the PET image, the professionals randomly select a point in the focus area in the fusion image, and the system will automatically select the seed point of the focus area to delineate the tumor focus with the regional growth method. Finally, the focus delineated on the PET and CT fusion images is automatically mapped to CT images in the form of polygons, and rectangular segmentation and labeling are formed. This study took the actual PET/CT of patients with lymphatic cancer as an example. The semiautomatic labeling of the system and the manual labeling of imaging specialists were compared and verified. The recognition rate was 93.35%, and the misjudgment rate was 6.52%.

摘要

正电子发射断层扫描/计算机断层扫描(PET/CT)在肿瘤诊断中发挥着重要作用。然而,PET/CT 成像主要依赖于医学专业人员的手动解释和标记。巨大的工作量将影响深度学习的训练样本构建。在 PET/CT 图像中对肿瘤病变进行标记涉及计算机图形学和医学的交叉,例如注册、医学图像融合和病变标记。本文扩展了线性插值,在 PET 图像的特定区域增强它,并使用 PET/CT 图像的外框缩放和最小二乘残差仿射方法。对 PET 和 CT 图像进行小波变换,然后按比例合成形成 PET/CT 融合图像。根据 18F-FDG(氟脱氧葡萄糖)在 PET 图像中的 SUV 吸收情况,专业人员在融合图像中的焦点区域随机选择一个点,系统将自动选择焦点区域的种子点,并用区域生长法勾勒出肿瘤焦点。最后,在 PET 和 CT 融合图像上勾勒出的焦点以多边形的形式自动映射到 CT 图像上,形成矩形分割和标记。本研究以淋巴瘤患者的实际 PET/CT 为例,对系统的半自动标记和影像学专家的手动标记进行了比较和验证。识别率为 93.35%,误判率为 6.52%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b84/9320307/3b7d5d47fe65/sensors-22-05171-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验