IEEE Trans Med Imaging. 2017 Nov;36(11):2276-2286. doi: 10.1109/TMI.2017.2720261. Epub 2017 Jun 27.
Whole body oncological screening using CT images requires a good anatomical localisation of organs and the skeleton. While a number of algorithms for multi-organ localisation have been presented, developing algorithms for a dense anatomical annotation of the whole skeleton, however, has not been addressed until now. Only methods for specialised applications, e.g., in spine imaging, have been previously described. In this work, we propose an approach for localising and annotating different parts of the human skeleton in CT images. We introduce novel anatomical trilateration features and employ them within iterative scale-adaptive random forests in a hierarchical fashion to annotate the whole skeleton. The anatomical trilateration features provide high-level long-range context information that complements the classical local context-based features used in most image segmentation approaches. They rely on anatomical landmarks derived from the previous element of the cascade to express positions relative to reference points. Following a hierarchical approach, large anatomical structures are segmented first, before identifying substructures. We develop this method for bone annotation but also illustrate its performance, although not specifically optimised for it, for multi-organ annotation. Our method achieves average dice scores of 77.4 to 85.6 for bone annotation on three different data sets. It can also segment different organs with sufficient performance for oncological applications, e.g., for PET/CT analysis, and its computation time allows for its use in clinical practice.
全身肿瘤筛查使用 CT 图像需要对器官和骨骼进行良好的解剖定位。虽然已经提出了许多用于多器官定位的算法,但到目前为止,还没有针对整个骨骼进行密集解剖注释的算法。以前只描述过专门应用的方法,例如在脊柱成像中。在这项工作中,我们提出了一种在 CT 图像中定位和注释人体骨骼不同部位的方法。我们引入了新的解剖三角测量特征,并在分层的迭代尺度自适应随机森林中使用它们来注释整个骨骼。解剖三角测量特征提供了高级的长程上下文信息,补充了大多数图像分割方法中使用的经典基于局部上下文的特征。它们依赖于从级联的前一个元素中得出的解剖学标志,以表达相对于参考点的位置。采用分层方法,首先分割大的解剖结构,然后再识别子结构。我们开发了这种用于骨骼注释的方法,但也说明了它的性能,尽管它不是专门针对它进行优化的,也可以用于多器官注释。我们的方法在三个不同的数据集上进行骨骼注释时,平均骰子分数达到 77.4 到 85.6。它还可以对不同的器官进行分割,其性能足以满足肿瘤学应用的需要,例如 PET/CT 分析,并且其计算时间允许在临床实践中使用。