Suppr超能文献

下一代糖尿病诊断与个性化饮食-运动管理:一种混合集成范式。

Next-generation diabetes diagnosis and personalized diet-activity management: A hybrid ensemble paradigm.

作者信息

Sajid Muhammad, Malik Kaleem Razzaq, Khan Ali Haider, Iqbal Sajid, Alaulamie Abdullah A, Ilyas Qazi Mudassar

机构信息

Department of Computer Science, Air University, Islamabad, Pakistan.

Department of Software Engineering, Faculty of Computer Science, Lahore Garrison University, Lahore, Pakistan.

出版信息

PLoS One. 2025 Jan 8;20(1):e0307718. doi: 10.1371/journal.pone.0307718. eCollection 2025.

Abstract

Diabetes, a chronic metabolic condition characterised by persistently high blood sugar levels, necessitates early detection to mitigate its risks. Inadequate dietary choices can contribute to various health complications, emphasising the importance of personalised nutrition interventions. However, real-time selection of diets tailored to individual nutritional needs is challenging because of the intricate nature of foods and the abundance of dietary sources. Because diabetes is a chronic condition, patients with this illness must choose a healthy diet. Patients with diabetes frequently need to visit their doctor and rely on expensive medications to manage their condition. It is challenging to purchase medication for chronic illnesses on a regular basis in underdeveloped nations. Motivated by this concept, we suggest a hybrid model that, rather than depending solely on medication to evade a visit to the doctor, can first anticipate diabetes and then suggest a diet and exercise regimen. This research proposes an optimized approach by harnessing machine learning classifiers, including Random Forest, Support Vector Machine, and XGBoost, to develop a robust framework for accurate diabetes prediction. The study addresses the difficulties in predicting diabetes precisely from limited labeled data and outliers in diabetes datasets. Furthermore, a thorough food and exercise recommender system is unveiled, offering individualized and health-conscious nutrition recommendations based on user preferences and medical information. Leveraging efficient learning and inference techniques, the study achieves a meager error rate of less than 30% using an extensive dataset comprising over 100 million user-rated foods. This research underscores the significance of integrating machine learning classifiers with personalized nutritional recommendations to enhance diabetes prediction and management. The proposed framework has substantial potential to facilitate early detection, provide tailored dietary guidance, and alleviate the economic burden associated with diabetes-related healthcare expenses.

摘要

糖尿病是一种以血糖水平持续升高为特征的慢性代谢疾病,需要早期检测以降低其风险。饮食选择不当会导致各种健康并发症,这凸显了个性化营养干预的重要性。然而,由于食物的复杂性和丰富的饮食来源,实时选择符合个人营养需求的饮食具有挑战性。因为糖尿病是一种慢性病,患有这种疾病的患者必须选择健康的饮食。糖尿病患者经常需要去看医生,并依赖昂贵的药物来控制病情。在不发达国家,定期购买慢性病药物具有挑战性。受这一理念的启发,我们提出了一种混合模型,该模型不是仅仅依靠药物来避免看医生,而是可以首先预测糖尿病,然后建议饮食和锻炼方案。本研究提出了一种优化方法,利用包括随机森林、支持向量机和XGBoost在内的机器学习分类器,开发一个强大的框架用于准确的糖尿病预测。该研究解决了从有限的标记数据和糖尿病数据集中的异常值精确预测糖尿病的困难。此外,还推出了一个全面的食物和锻炼推荐系统,根据用户偏好和医疗信息提供个性化的、注重健康的营养建议。利用高效的学习和推理技术,该研究使用包含超过1亿条用户评分食物的广泛数据集,实现了不到30%的低错误率。本研究强调了将机器学习分类器与个性化营养建议相结合以加强糖尿病预测和管理的重要性。所提出的框架具有很大的潜力,可促进早期检测、提供个性化的饮食指导,并减轻与糖尿病相关的医疗费用所带来的经济负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验