Suppr超能文献

基于交替矩阵和进化链式树的改进 LDTW 算法。

Improved LDTW Algorithm Based on the Alternating Matrix and the Evolutionary Chain Tree.

机构信息

College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China.

School of Computer Science, University of South China, Hengyang 421001, China.

出版信息

Sensors (Basel). 2022 Jul 15;22(14):5305. doi: 10.3390/s22145305.

Abstract

Dynamic time warping under limited warping path length (LDTW) is a state-of-the-art time series similarity evaluation method. However, it suffers from high space-time complexity, which makes some large-scale series evaluations impossible. In this paper, an alternating matrix with a concise structure is proposed to replace the complex three-dimensional matrix in LDTW and reduce the high complexity. Furthermore, an evolutionary chain tree is proposed to represent the warping paths and ensure an effective retrieval of the optimal one. Experiments using the benchmark platform offered by the University of California-Riverside show that our method uses 1.33% of the space, 82.7% of the time used by LDTW on average, which proves the efficiency of the proposed method.

摘要

在有限的扭曲路径长度(LDTW)下进行动态时间扭曲是一种先进的时间序列相似性评估方法。然而,它存在着高时空复杂度的问题,这使得一些大规模的序列评估变得不可能。在本文中,我们提出了一种具有简洁结构的交替矩阵来替代 LDTW 中的复杂三维矩阵,从而降低了复杂度。此外,我们还提出了一种进化链式树来表示扭曲路径,以确保有效地检索到最优路径。使用加利福尼亚大学河滨分校提供的基准平台进行的实验表明,我们的方法使用了 1.33%的空间,平均使用了 LDTW 时间的 82.7%,这证明了所提出方法的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3eb/9318603/158db180434e/sensors-22-05305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验