Suppr超能文献

一种用于多类别混淆硬件识别的新型高效卷积神经网络算法。

A Novel Efficient Convolutional Neural Algorithm for Multi-Category Aliasing Hardware Recognition.

机构信息

School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China.

出版信息

Sensors (Basel). 2022 Jul 18;22(14):5358. doi: 10.3390/s22145358.

Abstract

When performing robotic automatic sorting and assembly operations of multi-category hardware, there are some problems with the existing convolutional neural network visual recognition algorithms, such as large computing power consumption, low recognition efficiency, and a high rate of missed detection and false detection. A novel efficient convolutional neural algorithm for multi-category aliasing hardware recognition is proposed in this paper. On the basis of SSD, the novel algorithm uses Resnet-50 instead of VGG16 as the backbone feature extraction network, and it integrates ECA-Net and Improved Spatial Attention Block (ISAB): two attention mechanisms to improve the ability of learning and extract target features. Then, we pass the weighted features to extra feature layers to build an improved SSD algorithm. At last, in order to compare the performance difference between the novel algorithm and the existing algorithms, three kinds of hardware with different sizes are chosen to constitute an aliasing scene that can simulate an industrial site, and some comparative experiments have been completed finally. The experimental results show that the novel algorithm has an mAP of 98.20% and FPS of 78, which are better than Faster R-CNN, YOLOv4, YOLOXs, EfficientDet-D1, and original SSD in terms of comprehensive performance. The novel algorithm proposed in this paper can improve the efficiency of robotic sorting and assembly of multi-category hardware.

摘要

在执行多类别硬件的机器人自动分拣和装配操作时,现有的卷积神经网络视觉识别算法存在一些问题,例如计算量大、识别效率低、漏检和误检率高。本文提出了一种用于多类别混淆硬件识别的新型高效卷积神经网络算法。该新型算法在 SSD 的基础上,用 Resnet-50 代替 VGG16 作为骨干特征提取网络,并集成 ECA-Net 和改进的空间注意力块(ISAB):两种注意力机制,以提高学习能力和提取目标特征的能力。然后,我们将加权特征传递到额外的特征层,以构建改进的 SSD 算法。最后,为了比较该新型算法和现有算法的性能差异,选择了三种不同尺寸的硬件来构成一个可以模拟工业现场的混淆场景,并最终完成了一些对比实验。实验结果表明,该新型算法的 mAP 为 98.20%,FPS 为 78,在综合性能方面优于 Faster R-CNN、YOLOv4、YOLOXs、EfficientDet-D1 和原始 SSD。本文提出的新型算法可以提高多类别硬件的机器人分拣和装配效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验