文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

物联网在智能医疗保健中的采用和应用:系统评价。

IoT Adoption and Application for Smart Healthcare: A Systematic Review.

机构信息

School of Computer Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.

Department of Computer Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.

出版信息

Sensors (Basel). 2022 Jul 19;22(14):5377. doi: 10.3390/s22145377.


DOI:10.3390/s22145377
PMID:35891056
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9316993/
Abstract

In general, the adoption of IoT applications among end users in healthcare is very low. Healthcare professionals present major challenges to the successful implementation of IoT for providing healthcare services. Many studies have offered important insights into IoT adoption in healthcare. Nevertheless, there is still a need to thoroughly review the effective factors of IoT adoption in a systematic manner. The purpose of this study is to accumulate existing knowledge about the factors that influence medical professionals to adopt IoT applications in the healthcare sector. This study reviews, compiles, analyzes, and systematically synthesizes the relevant data. This review employs both automatic and manual search methods to collect relevant studies from 2015 to 2021. A systematic search of the articles was carried out on nine major scientific databases: Google Scholar, Science Direct, Emerald, Wiley, PubMed, Springer, MDPI, IEEE, and Scopus. A total of 22 articles were selected as per the inclusion criteria. The findings show that TAM, TPB, TRA, and UTAUT theories are the most widely used adoption theories in these studies. Furthermore, the main perceived adoption factors of IoT applications in healthcare at the individual level are: social influence, attitude, and personal inattentiveness. The IoT adoption factors at the technology level are perceived usefulness, perceived ease of use, performance expectancy, and effort expectations. In addition, the main factor at the security level is perceived privacy risk. Furthermore, at the health level, the main factors are perceived severity and perceived health risk, respectively. Moreover, financial cost, and facilitating conditions are considered as the main factors at the environmental level. Physicians, patients, and health workers were among the participants who were involved in the included publications. Various types of IoT applications in existing studies are as follows: a wearable device, monitoring devices, rehabilitation devices, telehealth, behavior modification, smart city, and smart home. Most of the studies about IoT adoption were conducted in France and Pakistan in the year 2020. This systematic review identifies the essential factors that enable an understanding of the barriers and possibilities for healthcare providers to implement IoT applications. Finally, the expected influence of COVID-19 on IoT adoption in healthcare was evaluated in this study.

摘要

一般来说,医疗保健领域的最终用户对物联网应用的采用率非常低。医疗保健专业人员在成功实施物联网以提供医疗服务方面带来了重大挑战。许多研究为物联网在医疗保健中的采用提供了重要的见解。然而,仍然需要系统地全面审查物联网采用的有效因素。本研究的目的是积累现有知识,了解影响医疗专业人员在医疗保健领域采用物联网应用的因素。本研究回顾、编制、分析和系统综合相关数据。本综述采用自动和手动搜索方法从 2015 年至 2021 年从九个主要科学数据库中收集相关研究:Google Scholar、Science Direct、Emerald、Wiley、PubMed、Springer、MDPI、IEEE 和 Scopus。根据纳入标准共选择了 22 篇文章。研究结果表明,TAM、TPB、TRA 和 UTAUT 理论是这些研究中使用最广泛的采用理论。此外,个人层面上物联网应用在医疗保健中的主要感知采用因素包括:社会影响、态度和个人不关注。技术层面上物联网应用的感知采用因素包括有用性感知、易用性感知、性能期望和努力期望。此外,安全层面的主要因素是感知隐私风险。此外,在健康层面,主要因素分别是感知严重程度和感知健康风险。此外,财务成本和促进条件被认为是环境层面的主要因素。参与纳入出版物的参与者包括医生、患者和卫生工作者。现有研究中的各种物联网应用如下:可穿戴设备、监测设备、康复设备、远程医疗、行为改变、智慧城市和智能家居。关于物联网采用的大多数研究都是在 2020 年在法国和巴基斯坦进行的。本系统评价确定了使我们能够理解医疗保健提供者实施物联网应用的障碍和可能性的基本因素。最后,本研究评估了 COVID-19 对医疗保健中物联网采用的预期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/37bcd9249e99/sensors-22-05377-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/8978b8ee2914/sensors-22-05377-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/6bc9ae408744/sensors-22-05377-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/266a1a6f4e05/sensors-22-05377-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/5fcdcbf80f51/sensors-22-05377-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/2ffc0543b2e0/sensors-22-05377-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/531b51a05ae1/sensors-22-05377-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/4f0ee934c8be/sensors-22-05377-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/f6eeb7876433/sensors-22-05377-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/f9ea2b585874/sensors-22-05377-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/482445911ba6/sensors-22-05377-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/62fa97a66384/sensors-22-05377-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/37bcd9249e99/sensors-22-05377-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/8978b8ee2914/sensors-22-05377-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/6bc9ae408744/sensors-22-05377-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/266a1a6f4e05/sensors-22-05377-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/5fcdcbf80f51/sensors-22-05377-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/2ffc0543b2e0/sensors-22-05377-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/531b51a05ae1/sensors-22-05377-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/4f0ee934c8be/sensors-22-05377-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/f6eeb7876433/sensors-22-05377-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/f9ea2b585874/sensors-22-05377-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/482445911ba6/sensors-22-05377-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/62fa97a66384/sensors-22-05377-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9b/9316993/37bcd9249e99/sensors-22-05377-g012.jpg

相似文献

[1]
IoT Adoption and Application for Smart Healthcare: A Systematic Review.

Sensors (Basel). 2022-7-19

[2]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[3]
Shared decision-making interventions for people with mental health conditions.

Cochrane Database Syst Rev. 2022-11-11

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[5]
Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature.

Health Technol Assess. 2001

[6]
Surveillance of Barrett's oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.

Health Technol Assess. 2006-3

[7]
Stakeholders' perceptions and experiences of factors influencing the commissioning, delivery, and uptake of general health checks: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-3-20

[8]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2022-11-17

[9]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2021-9-14

[10]
Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views.

Cochrane Database Syst Rev. 2022-4-26

引用本文的文献

[1]
Implementation and Adherence of a Custom Mobile Application for Anonymous Bidirectional Communication Among Nearly 4000 Participants: Insights from the Longitudinal RisCoin Study.

Infect Dis Rep. 2025-7-24

[2]
Attitudes, Perceptions, and Factors Influencing the Adoption of AI in Health Care Among Medical Staff: Nationwide Cross-Sectional Survey Study.

J Med Internet Res. 2025-8-8

[3]
Key Factors Shaping Successful Implementation of the Internet of Things (IoT) in Health Care: Qualitative Study.

JMIR Hum Factors. 2025-6-27

[4]
Leveraging Kaizen with Process Mining in Healthcare Settings: A Conceptual Framework for Data-Driven Continuous Improvement.

Healthcare (Basel). 2025-4-19

[5]
Integrating 6G technology in smart hospitals: challenges and opportunities for enhanced healthcare services.

Front Med (Lausanne). 2025-4-4

[6]
Seniors' attitudes and intention toward IoT enabled healthcare devices in emerging economies.

Sci Rep. 2025-4-17

[7]
The Future of Healthcare Is Digital: Unlocking the Potential of Mobile Health and E-Health Solutions.

Healthcare (Basel). 2025-4-3

[8]
Using Internet of Things for Child Care: A Systematic Review.

Int J Prev Med. 2025-1-31

[9]
Exploring Technology Acceptance of Healthcare Devices: The Moderating Role of Device Type and Generation.

Sensors (Basel). 2024-12-11

[10]
Adoption of telepharmacy among pharmacists, physicians, and nurses at Hawassa City Public Hospitals, Ethiopia.

PLOS Digit Health. 2024-12-11

本文引用的文献

[1]
Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review.

J Oral Biol Craniofac Res. 2022

[2]
COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings.

IEEE Open J Eng Med Biol. 2020-9-29

[3]
Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments.

Front Digit Health. 2020-6-23

[4]
Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT.

Sensors (Basel). 2021-6-1

[5]
A global database of COVID-19 vaccinations.

Nat Hum Behav. 2021-7

[6]
Towards a new era of mass data collection: Assessing pandemic surveillance technologies to preserve user privacy.

Technol Forecast Soc Change. 2021-6

[7]
Virtual Health Care for Community Management of Patients With COVID-19 in Australia: Observational Cohort Study.

J Med Internet Res. 2021-3-9

[8]
Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study.

Lancet Digit Health. 2020-2

[9]
Analyzing changes in respiratory rate to predict the risk of COVID-19 infection.

PLoS One. 2020

[10]
Internet of Things for Current COVID-19 and Future Pandemics: an Exploratory Study.

J Healthc Inform Res. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索