Suppr超能文献

利用可穿戴设备数据改善美国州级实时流感样疾病监测:一项基于人群的研究。

Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study.

机构信息

Translational Institute, Scripps Research, La Jolla, CA, USA.

Translational Institute, Scripps Research, La Jolla, CA, USA.

出版信息

Lancet Digit Health. 2020 Feb;2(2):e85-e93. doi: 10.1016/S2589-7500(19)30222-5. Epub 2020 Jan 16.

Abstract

BACKGROUND

Acute infections can cause an individual to have an elevated resting heart rate (RHR) and change their routine daily activities due to the physiological response to the inflammatory insult. Consequently, we aimed to evaluate if population trends of seasonal respiratory infections, such as influenza, could be identified through wearable sensors that collect RHR and sleep data.

METHODS

We obtained de-identified sensor data from 200 000 individuals who used a Fitbit wearable device from March 1, 2016, to March 1, 2018, in the USA. We included users who wore a Fitbit for at least 60 days and used the same wearable throughout the entire period, and focused on the top five states with the most Fitbit users in the dataset: California, Texas, New York, Illinois, and Pennsylvania. Inclusion criteria included having a self-reported birth year between 1930 and 2004, height greater than 1 m, and weight greater than 20 kg. We excluded daily measurements with missing RHR, missing wear time, and wear time less than 1000 min per day. We compared sensor data with weekly estimates of influenza-like illness (ILI) rates at the state level, as reported by the US Centers for Disease Control and Prevention (CDC), by identifying weeks in which Fitbit users displayed elevated RHRs and increased sleep levels. For each state, we modelled ILI case counts with a negative binomial model that included 3-week lagged CDC ILI rate data (null model) and the proportion of weekly Fitbit users with elevated RHR and increased sleep duration above a specified threshold (full model). We also evaluated weekly change in ILI rate by linear regression using change in proportion of elevated Fitbit data. Pearson correlation was used to compare predicted versus CDC reported ILI rates.

FINDINGS

We identified 47 249 users in the top five states who wore a Fitbit consistently during the study period, including more than 13·3 million total RHR and sleep measures. We found the Fitbit data significantly improved ILI predictions in all five states, with an average increase in Pearson correlation of 0·12 (SD 0·07) over baseline models, corresponding to an improvement of 6·3-32·9%. Correlations of the final models with the CDC ILI rates ranged from 0·84 to 0·97. Week-to-week changes in the proportion of Fitbit users with abnormal data were associated with week-to-week changes in ILI rates in most cases.

INTERPRETATION

Activity and physiological trackers are increasingly used in the USA and globally to monitor individual health. By accessing these data, it could be possible to improve real-time and geographically refined influenza surveillance. This information could be vital to enact timely outbreak response measures to prevent further transmission of influenza cases during outbreaks.

FUNDING

Partly supported by the US National Institutes of Health National Center for Advancing Translational Sciences.

摘要

背景

急性感染会导致个体的静息心率(RHR)升高,并由于对炎症损伤的生理反应而改变其日常活动。因此,我们旨在评估是否可以通过收集 RHR 和睡眠数据的可穿戴传感器来识别季节性呼吸道感染(如流感)的人群趋势。

方法

我们从 2016 年 3 月 1 日至 2018 年 3 月 1 日期间在美国使用 Fitbit 可穿戴设备的 20 万名个体中获得了去识别传感器数据。我们纳入了佩戴 Fitbit 至少 60 天且在整个期间使用相同可穿戴设备的用户,并重点关注数据集中拥有最多 Fitbit 用户的前五个州:加利福尼亚州、得克萨斯州、纽约州、伊利诺伊州和宾夕法尼亚州。纳入标准包括自报出生年份在 1930 年至 2004 年之间、身高大于 1 米且体重大于 20 公斤。我们排除了 RHR 缺失、佩戴时间缺失和每天佩戴时间少于 1000 分钟的日常测量值。我们通过识别佩戴者 RHR 升高和睡眠水平增加的周数,将传感器数据与美国疾病控制与预防中心(CDC)报告的州级流感样疾病(ILI)率的每周估计值进行比较。对于每个州,我们使用负二项式模型对 ILI 病例数进行建模,该模型包括 3 周滞后的 CDC ILI 率数据(零模型)和每周佩戴者 RHR 升高和睡眠持续时间超过特定阈值的比例(全模型)。我们还使用变化比例的线性回归来评估 ILI 率的每周变化。使用 Pearson 相关性比较预测的 ILI 率与 CDC 报告的 ILI 率。

结果

我们在这五个州中确定了 47249 名一致佩戴 Fitbit 的用户,其中包括超过 1330 万次总 RHR 和睡眠测量值。我们发现 Fitbit 数据显著提高了所有五个州的 ILI 预测,与基线模型相比,平均 Pearson 相关性增加了 0.12(SD 0.07),对应于 6.3%至 32.9%的改善。最终模型与 CDC ILI 率的相关性范围为 0.84 至 0.97。在大多数情况下,佩戴者异常数据比例的每周变化与 ILI 率的每周变化相关。

解释

活动和生理追踪器在美国和全球范围内越来越多地用于监测个体健康。通过访问这些数据,有可能改善实时和地理上更精细的流感监测。这些信息对于及时采取疫情应对措施以防止流感疫情爆发期间进一步传播病例至关重要。

资助

部分得到美国国立卫生研究院国家转化医学科学中心的支持。

相似文献

引用本文的文献

本文引用的文献

2
Collaborative efforts to forecast seasonal influenza in the United States, 2015-2016.
Sci Rep. 2019 Jan 24;9(1):683. doi: 10.1038/s41598-018-36361-9.
7
Weight Gain over the Holidays in Three Countries.三个国家节假日期间的体重增加情况。
N Engl J Med. 2016 Sep 22;375(12):1200-2. doi: 10.1056/NEJMc1602012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验