Suppr超能文献

多无人机路径规划的最大-最小蚁群优化方法的收敛性分析。

Convergence Analysis of Path Planning of Multi-UAVs Using Max-Min Ant Colony Optimization Approach.

机构信息

Electronic Engineering Department, Sir Syed University of Engineering & Technology, Karachi 75300, Pakistan.

Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Jul 19;22(14):5395. doi: 10.3390/s22145395.

Abstract

Unmanned Aerial Vehicles (UAVs) seem to be the most efficient way of achieving the intended aerial tasks, according to recent improvements. Various researchers from across the world have studied a variety of UAV formations and path planning methodologies. However, when unexpected obstacles arise during a collective flight, path planning might get complicated. The study needs to employ hybrid algorithms of bio-inspired computations to address path planning issues with more stability and speed. In this article, two hybrid models of Ant Colony Optimization were compared with respect to convergence time, i.e., the Max-Min Ant Colony Optimization approach in conjunction with the Differential Evolution and Cauchy mutation operators. Each algorithm was run on a UAV and traveled a predetermined path to evaluate its approach. In terms of the route taken and convergence time, the simulation results suggest that the MMACO-DE technique outperforms the MMACO-CM approach.

摘要

根据最近的改进,无人驾驶飞行器 (UAV) 似乎是实现预期空中任务的最有效方式。来自世界各地的各种研究人员已经研究了各种 UAV 编队和路径规划方法。然而,当集体飞行中出现意外障碍物时,路径规划可能会变得复杂。这项研究需要采用生物启发计算的混合算法来解决具有更高稳定性和速度的路径规划问题。在本文中,比较了两种基于蚁群优化的混合模型,即与差分进化和柯西变异算子相结合的最大最小蚁群优化方法。每个算法都在一架 UAV 上运行,并行驶预定的路径来评估其方法。就所采取的路线和收敛时间而言,模拟结果表明,MMACO-DE 技术优于 MMACO-CM 方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75cf/9317728/d2c37222e232/sensors-22-05395-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验