Payandehpeyman J, Parvini N, Moradi K, Hashemian N
Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran.
Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Diam Relat Mater. 2022 Oct;128:109263. doi: 10.1016/j.diamond.2022.109263. Epub 2022 Jul 22.
SARS-CoV-2 is the causative agent of COVID-19 disease. The development of different variants has increased the prevalence, pathogenicity, and mortality of the SARS-CoV-2. Prompt diagnosis and timely initiation of therapy can undoubtedly minimize the damage caused by this virus. In this study, a wide range of emerging single layer two-dimensional materials (SL2DMs), including graphene, grapheme oxide (GO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), Ti3C2Tx MXene, and MoS2that can be used to fabricate highly sensitive biosensors, are analyzed using the finite element method based on antigen-antibody interaction. Important design parameters including sensor size, sensor aspect ratio, number of viruses, and applying in-plane strain on sensor performance are analyzed using frequency shift technique. In the following, an analytical relationship that can predict the limit of detection (LOD) according to the above parameters is proposed. The results show that all the above materials have a good performance in detecting viruses in the sample range of 10-100 viruses. This range can be reduced significantly by applying strains of less than 0.1. Also, applying strain increases shift frequency index by 2 to 3 times, which is a significant result. The maximum and minimum sensor performance are obtained for GO and Ti3C2Tx, respectively. The results of this paper can be used to build a new generation of two-dimensional biosensors for rapid detection of COVID-19 and other viruses.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是冠状病毒病(COVID-19)的病原体。不同变体的出现增加了SARS-CoV-2的流行率、致病性和死亡率。及时诊断并及时开始治疗无疑可以将这种病毒造成的损害降至最低。在本研究中,基于抗原-抗体相互作用,使用有限元方法分析了多种新兴的单层二维材料(SL2DMs),包括石墨烯、氧化石墨烯(GO)、还原氧化石墨烯(rGO)、六方氮化硼(h-BN)、Ti3C2Tx MXene和MoS2,这些材料可用于制造高度灵敏的生物传感器。使用频移技术分析了包括传感器尺寸、传感器长宽比、病毒数量以及对传感器性能施加面内应变等重要设计参数。接下来,提出了一种可以根据上述参数预测检测限(LOD)的解析关系。结果表明,上述所有材料在检测10 - 100个病毒的样本范围内都具有良好的性能。通过施加小于0.1的应变,这个范围可以显著缩小。此外,施加应变可使频移指数增加2至3倍,这是一个显著的结果。分别针对GO和Ti3C2Tx获得了最大和最小的传感器性能。本文的结果可用于构建新一代二维生物传感器,用于快速检测COVID-19和其他病毒。