Suppr超能文献

头颈部癌放疗中体积变化导致的计划适应性需求指示的早期预测:一种机器学习方法

Early Prediction of Planning Adaptation Requirement Indication Due to Volumetric Alterations in Head and Neck Cancer Radiotherapy: A Machine Learning Approach.

作者信息

Iliadou Vasiliki, Kakkos Ioannis, Karaiskos Pantelis, Kouloulias Vassilis, Platoni Kalliopi, Zygogianni Anna, Matsopoulos George K

机构信息

School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece.

Department of Biomedical Engineering, University of West Attica, 122 43 Athens, Greece.

出版信息

Cancers (Basel). 2022 Jul 22;14(15):3573. doi: 10.3390/cancers14153573.

Abstract

BACKGROUND

During RT cycles, the tumor response pattern could affect tumor coverage and may lead to organs at risk of overdose. As such, early prediction of significant volumetric changes could therefore reduce potential radiation-related adverse effects. Nevertheless, effective machine learning approaches based on the radiomic features of the clinically used CBCT images to determine the tumor volume variations due to RT not having been implemented so far.

METHODS

CBCT images from 40 HN cancer patients were collected weekly during RT treatment. From the obtained images, the Clinical Target Volume (CTV) and Parotid Glands (PG) regions of interest were utilized to calculate 104 delta-radiomics features. These features were fed on a feature selection and classification procedure for the early prediction of significant volumetric alterations.

RESULTS

The proposed framework was able to achieve 0.90 classification performance accuracy while detecting a small subset of discriminative characteristics from the 1st week of RT. The selected features were further analyzed regarding their effects on temporal changes in anatomy and tumor response modeling.

CONCLUSION

The use of machine learning algorithms offers promising perspectives for fast and reliable early prediction of large volumetric deviations as a result of RT treatment, exploiting hidden patterns in the overall anatomical characteristics.

摘要

背景

在放疗周期中,肿瘤反应模式可能会影响肿瘤覆盖范围,并可能导致危及器官受到过量照射。因此,早期预测显著的体积变化可以减少潜在的辐射相关不良反应。然而,基于临床使用的CBCT图像的放射组学特征来确定放疗引起的肿瘤体积变化的有效机器学习方法目前尚未实施。

方法

在放疗治疗期间每周收集40例头颈部癌症患者的CBCT图像。从获得的图像中,利用临床靶区(CTV)和腮腺(PG)感兴趣区域来计算104个增量放射组学特征。这些特征被用于特征选择和分类程序,以早期预测显著的体积改变。

结果

所提出的框架能够在放疗第1周检测到一小部分有鉴别力的特征时,实现0.90的分类性能准确率。对所选特征对解剖结构随时间变化和肿瘤反应建模的影响进行了进一步分析。

结论

利用机器学习算法对放疗治疗导致的大体积偏差进行快速可靠的早期预测具有广阔前景,这是通过挖掘整体解剖特征中的隐藏模式来实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0bb/9331795/70492e7d0f59/cancers-14-03573-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验