IEEE J Biomed Health Inform. 2021 Oct;25(10):3824-3833. doi: 10.1109/JBHI.2021.3085131. Epub 2021 Oct 5.
In the nascent field of neuroergonomics, mental workload assessment is one of the most important issues and has an apparent significance in real-world applications. Although prior research has achieved efficient single-task classification, scatted studies on cross-task mental workload assessment usually result in unsatisfactory performance. Here, we introduce a data-driven analysis framework to overcome the challenges regarding task-independent workload assessment using a fusion of EEG spectral characteristics and unveil the common neural mechanisms underlying mental workload. Specifically, multi-frequency power spectrum and functional connectivity (FC) were estimated for two workload levels in two working-memory tasks performed by 40 healthy participants, subsequently being fed into a machine learning approach to obtain the importance of each feature vector and evaluate classification performance in a cross-task fashion. Our framework achieved a classification accuracy of 0.94 for task-independent mental workload discrimination. Further investigation of the designated features in terms of their spectral and localization properties revealed task-independent common patterns in the neural mechanisms governing workload. In particular, increased workload was associated with elevated frontal delta and theta power but reduced parietal alpha power, whereas FC exhibited complex frequency- and region-dependent alterations. By implication, the employment of the EEG feature fusion emphasized their utility in serving as promising indicators for different workload conditions applications.
在神经工效学这一新兴领域中,心理工作量评估是最重要的问题之一,在实际应用中具有明显的意义。尽管先前的研究已经实现了高效的单任务分类,但关于跨任务心理工作量评估的分散研究通常导致性能不佳。在这里,我们引入了一种数据驱动的分析框架,通过融合 EEG 频谱特征来克服独立于任务的工作量评估的挑战,并揭示了心理工作量的共同神经机制。具体来说,对 40 名健康参与者执行的两项工作记忆任务中的两个工作负荷水平,估计了多频功率谱和功能连接 (FC),随后将其输入到机器学习方法中,以获得每个特征向量的重要性,并以跨任务的方式评估分类性能。我们的框架实现了独立于任务的心理工作量判别分类准确率为 0.94。进一步根据其频谱和定位特性对指定特征进行研究,揭示了控制工作量的神经机制中的独立于任务的共同模式。特别是,工作量增加与额部 delta 和 theta 功率增加但顶叶 alpha 功率降低有关,而 FC 则表现出复杂的频率和区域依赖性变化。这意味着,采用 EEG 特征融合强调了它们作为不同工作负荷条件应用的有前途的指标的实用性。