Fanizza Elisabetta, Mastrogiacomo Rita, Pugliese Orietta, Guglielmelli Alexa, De Sio Luciano, Castaldo Rachele, Scavo Maria Principia, Giancaspro Mariangela, Rizzi Federica, Gentile Gennaro, Vischio Fabio, Carrieri Livianna, De Pasquale Ilaria, Mandriota Giacomo, Petronella Francesca, Ingrosso Chiara, Lavorgna Marino, Comparelli Roberto, Striccoli Marinella, Curri Maria Lucia, Depalo Nicoletta
Department of Chemistry, University of Bari, A. Moro, Via Orabona 4, 70126 Bari, Italy.
CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy.
Nanomaterials (Basel). 2022 Jul 24;12(15):2545. doi: 10.3390/nano12152545.
Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on CuS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though CuS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, CuS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron-phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm power density.
具有近红外(NIR)吸收特性的等离子体纳米结构,正逐渐成为用于体外光热(PT)研究和体内癌症疾病PT治疗的高效纳米系统。在不同材料中,基于硫化铜(CuS)纳米晶体(NCs)的新型等离子体纳米结构正在成为金纳米棒、纳米星和纳米壳的有价值替代品,金纳米棒、纳米星和纳米壳大量被用作近红外吸收纳米加热器。尽管CuS的等离子体特性与几何形状无关,但其尺寸、形状和表面化学所起的作用预计对高效的PT过程至关重要。在此,通过溶液相策略合成了包覆亲水性介孔二氧化硅壳(MSS)的CuS NCs,调节了核的几何形状、MSS厚度和织构。除了其负载能力外,二氧化硅壳已被广泛报道能提供比有机分子/聚合物涂层更强健的等离子体核保护,并且由于降低了界面热阻以及通过界面的直接电子 - 声子耦合,改善了从NC到环境的热流。对核壳纳米颗粒进行了系统的结构和形态分析,并使用808 nm泵浦激光束进行了深入的热等离子体表征。结果表明,包覆几十纳米厚MSS的大三角形纳米片(NPLs)在激光照射下表现出良好的光稳定性,在6 W/cm功率密度下短时间照射(60 s)时温度升高超过38°C,PT效率达到20%。