Suppr超能文献

基于机器学习的老年患者住院并发症预测——以 GLIM、SGA 和 ESPEN 2015 营养不良诊断为因素。

Machine Learning-Based Prediction of In-Hospital Complications in Elderly Patients Using GLIM-, SGA-, and ESPEN 2015-Diagnosed Malnutrition as a Factor.

机构信息

Department of Clinical nutrition, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.

The Key Laboratory of Geriatrics, National Center of Gerontology, National Health Commission, Beijing Hospital, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.

出版信息

Nutrients. 2022 Jul 24;14(15):3035. doi: 10.3390/nu14153035.

Abstract

BACKGROUND

Malnutrition is prevalent in elderly inpatients and is associated with various adverse outcomes during their hospital stay, but the diagnosis of malnutrition still lacks widely applicable criteria. This study aimed to investigate the association of malnutrition diagnosed with the SGA, ESPEN 2015, and GLIM criteria, respectively, with in-hospital complications in elderly patients.

METHOD

Hospitalized patients over 65 years old who had been assessed with the SGA guideline for malnutrition at admission were retrospectively recruited from a large observational cohort study conducted in 34 level-A tertiary hospitals in 18 cities in China from June to September 2014. Malnutrition was then retrospectively diagnosed using the GLIM and ESPEN 2015 criteria, respectively, for comparison with the results of the SGA scale. The risk factors for malnutrition were analyzed using logistic regression, and the value of the three diagnostic criteria in predicting the in-hospital complications was subsequently explored using multivariate regression and the random forest machine learning algorithm.

RESULTS

A total of 2526 subjects who met the inclusion and exclusion criteria of the study were selected from the 7122 patients in the dataset, with an average age of 74.63 ± 7.12 years, 59.2% male, and 94.2% married. According to the GLIM, SGA, and ESPEN 2015 criteria, the detection rates of malnutrition were 37.8% (956 subjects), 32.8% (829 subjects), and 17.0% (429 subjects), respectively. The diagnostic consistency between the GLIM and the SGA criteria is better than that between the ESPEN 2015 and the SGA criteria (Kappa statistics, 0.890 vs. 0.590). Logistic regression showed that the risk of developing complications in the GLIM-defined malnutrition patients is 2.414 times higher than that of normal patients, higher than those of the ESPEN 2015 and SGA criteria (1.786 and 1.745 times, respectively). The random forest classifications show that the GLIM criteria have a higher ability to predict complications in these elderly patients than the SGA and ESPEN 2015 criteria with a mean decrease in accuracy of 12.929, 10.251, and 5.819, respectively, and a mean decrease in Gini of 2.055, 1.817, and 1.614, respectively.

CONCLUSION

The prevalence of malnutrition diagnosed with the GLIM criteria is higher than that of the SGA and the ESPEN 2015 criteria. The GLIM criteria are better than the SGA and the ESPEN 2015 criteria for predicting in-hospital complications in elderly patients.

摘要

背景

营养不良在老年住院患者中很常见,并且与住院期间的各种不良后果有关,但营养不良的诊断仍然缺乏广泛适用的标准。本研究旨在探讨分别使用 SGA、ESPEN 2015 和 GLIM 标准诊断的营养不良与老年患者住院并发症的关系。

方法

从 2014 年 6 月至 9 月在中国 18 个城市的 34 家甲级三级医院进行的一项大型观察性队列研究中,回顾性招募了入院时根据 SGA 营养不良指南评估的年龄在 65 岁以上的住院患者。分别使用 GLIM 和 ESPEN 2015 标准回顾性诊断营养不良,以与 SGA 量表的结果进行比较。使用逻辑回归分析营养不良的危险因素,并使用多元回归和随机森林机器学习算法探讨三种诊断标准预测住院并发症的价值。

结果

从数据集中的 7122 名患者中,共选择了符合研究纳入和排除标准的 2526 名患者,平均年龄为 74.63±7.12 岁,59.2%为男性,94.2%已婚。根据 GLIM、SGA 和 ESPEN 2015 标准,营养不良的检出率分别为 37.8%(956 例)、32.8%(829 例)和 17.0%(429 例)。GLIM 与 SGA 标准之间的诊断一致性优于 ESPEN 2015 与 SGA 标准之间的诊断一致性(Kappa 统计,0.890 与 0.590)。逻辑回归显示,GLIM 定义的营养不良患者发生并发症的风险是正常患者的 2.414 倍,高于 ESPEN 2015 和 SGA 标准(分别为 1.786 和 1.745 倍)。随机森林分类显示,GLIM 标准在预测这些老年患者的并发症方面具有比 SGA 和 ESPEN 2015 标准更高的能力,准确性分别平均降低了 12.929、10.251 和 5.819,基尼系数分别平均降低了 2.055、1.817 和 1.614。

结论

GLIM 标准诊断的营养不良患病率高于 SGA 和 ESPEN 2015 标准。GLIM 标准在预测老年患者住院并发症方面优于 SGA 和 ESPEN 2015 标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/9331502/427d518a2254/nutrients-14-03035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验