The Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Moscow, Russia.
FSRC «Crystallography and Photonics» RAS, Leninskiy pr. 59, 119333 Moscow, Russia.
Tomography. 2022 Jul 22;8(4):1854-1868. doi: 10.3390/tomography8040156.
The human olfactory bulb (OB) has a laminar structure. The segregation of cell populations in the OB image poses a significant challenge because of indistinct boundaries of the layers. Standard 3D visualization tools usually have a low resolution and cannot provide the high accuracy required for morphometric analysis. X-ray phase contrast tomography (XPCT) offers sufficient resolution and contrast to identify single cells in large volumes of the brain. The numerous microanatomical structures detectable in XPCT image of the OB, however, greatly complicate the manual delineation of OB neuronal cell layers. To address the challenging problem of fully automated segmentation of XPCT images of human OB morphological layers, we propose a new pipeline for tomographic data processing. Convolutional neural networks (CNN) were used to segment XPCT image of native unstained human OB. Virtual segmentation of the whole OB and an accurate delineation of each layer in a healthy non-demented OB is mandatory as the first step for assessing OB morphological changes in smell impairment research. In this framework, we proposed an effective tool that could help to shed light on OB layer-specific degeneration in patients with olfactory disorder.
人类嗅球(OB)具有层状结构。由于层的边界不明显,OB 中细胞群体的分离对图像造成了重大挑战。标准的 3D 可视化工具通常分辨率较低,无法为形态计量分析提供所需的高精度。X 射线相衬断层摄影术(XPCT)具有足够的分辨率和对比度,可以识别大脑大体积中的单个细胞。然而,在 OB 的 XPCT 图像中检测到的许多微解剖结构大大增加了手动描绘 OB 神经元细胞层的难度。为了解决完全自动分割人类 OB 形态层的 XPCT 图像的具有挑战性的问题,我们提出了一种用于层析数据处理的新流水线。卷积神经网络(CNN)用于分割未染色的人类 OB 的 XPCT 图像。虚拟分割整个 OB 并准确描绘每个健康非痴呆 OB 的层是评估嗅觉障碍研究中 OB 形态变化的第一步。在此框架中,我们提出了一种有效的工具,可以帮助揭示嗅觉障碍患者 OB 层特异性退化。