Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Bates College, Program in Neuroscience, Lewiston, ME 04240, United States.
J Neurosci Methods. 2019 Jan 15;312:162-168. doi: 10.1016/j.jneumeth.2018.12.003. Epub 2018 Dec 6.
The Allen Mouse Brain Atlas allows study of the brain's molecular anatomy at cellular scale, for thousands genes. To fully leverage this resource, one must register histological images of brain tissue - a task made challenging by the brain's structural complexity and heterogeneity, as well as inter-experiment variability.
We have developed a deep-learning based methodology for classification and registration of thousands of sections of brain tissue, using the mouse olfactory bulb (OB) as a case study.
We trained a convolutional neural network (CNN) to derive an image similarity measure for in-situ hybridization experiments, and embedded these in a low-dimensional feature space to guide the design of registration templates. We then compiled a high quality, registered atlas of gene expression for the OB (the first such atlas for the OB, to our knowledge). As proof-of-principle, the atlas was clustered using non-negative matrix factorization to reveal canonical expression motifs, and to identify novel, lamina-specific marker genes.
Our method leverages virtues of CNNs for a set of important problems in molecular neuroanatomy, with performance comparable to existing methods.
The atlas we have complied allows for intra- and inter-laminar comparisons of gene expression patterns in the OB across thousands of genes, as well identification of canonical expression profiles through clustering. We anticipate that this will be a useful resource for investigators studying the bulb's development and functional topography. Our methods are publicly available for those interested in extending them to other brain areas.
Allen 鼠脑图谱可在细胞尺度上研究大脑的分子解剖结构,涵盖数千个基因。为了充分利用这一资源,必须对脑组织的组织学图像进行注册,这一任务由于大脑的结构复杂性和异质性以及实验间的可变性而变得极具挑战性。
我们开发了一种基于深度学习的分类和注册数千张脑组织切片的方法,以小鼠嗅球(OB)为案例研究。
我们训练了一个卷积神经网络(CNN)来推导原位杂交实验的图像相似性度量,并将其嵌入到低维特征空间中,以指导注册模板的设计。然后,我们编译了一个高质量的 OB 基因表达注册图谱(据我们所知,这是第一个 OB 的图谱)。作为原理验证,我们使用非负矩阵分解对图谱进行聚类,以揭示典型的表达模式,并识别新的、层特异性标记基因。
我们的方法利用 CNN 的优点解决了分子神经解剖学中的一系列重要问题,其性能与现有方法相当。
我们编制的图谱允许在 OB 中跨数千个基因进行层内和层间的基因表达模式比较,并通过聚类识别典型的表达谱。我们预计这将成为研究嗅球发育和功能拓扑的研究人员的有用资源。我们的方法可供有兴趣将其扩展到其他脑区的人员使用。