Suppr超能文献

基于深度学习的方法用于大规模分类、注册和聚类小鼠嗅球原位杂交实验。

A deep learning based method for large-scale classification, registration, and clustering of in-situ hybridization experiments in the mouse olfactory bulb.

机构信息

Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

Bates College, Program in Neuroscience, Lewiston, ME 04240, United States.

出版信息

J Neurosci Methods. 2019 Jan 15;312:162-168. doi: 10.1016/j.jneumeth.2018.12.003. Epub 2018 Dec 6.

Abstract

BACKGROUND

The Allen Mouse Brain Atlas allows study of the brain's molecular anatomy at cellular scale, for thousands genes. To fully leverage this resource, one must register histological images of brain tissue - a task made challenging by the brain's structural complexity and heterogeneity, as well as inter-experiment variability.

NEW METHOD

We have developed a deep-learning based methodology for classification and registration of thousands of sections of brain tissue, using the mouse olfactory bulb (OB) as a case study.

RESULTS

We trained a convolutional neural network (CNN) to derive an image similarity measure for in-situ hybridization experiments, and embedded these in a low-dimensional feature space to guide the design of registration templates. We then compiled a high quality, registered atlas of gene expression for the OB (the first such atlas for the OB, to our knowledge). As proof-of-principle, the atlas was clustered using non-negative matrix factorization to reveal canonical expression motifs, and to identify novel, lamina-specific marker genes.

COMPARISON WITH EXISTING METHODS

Our method leverages virtues of CNNs for a set of important problems in molecular neuroanatomy, with performance comparable to existing methods.

CONCLUSION

The atlas we have complied allows for intra- and inter-laminar comparisons of gene expression patterns in the OB across thousands of genes, as well identification of canonical expression profiles through clustering. We anticipate that this will be a useful resource for investigators studying the bulb's development and functional topography. Our methods are publicly available for those interested in extending them to other brain areas.

摘要

背景

Allen 鼠脑图谱可在细胞尺度上研究大脑的分子解剖结构,涵盖数千个基因。为了充分利用这一资源,必须对脑组织的组织学图像进行注册,这一任务由于大脑的结构复杂性和异质性以及实验间的可变性而变得极具挑战性。

新方法

我们开发了一种基于深度学习的分类和注册数千张脑组织切片的方法,以小鼠嗅球(OB)为案例研究。

结果

我们训练了一个卷积神经网络(CNN)来推导原位杂交实验的图像相似性度量,并将其嵌入到低维特征空间中,以指导注册模板的设计。然后,我们编译了一个高质量的 OB 基因表达注册图谱(据我们所知,这是第一个 OB 的图谱)。作为原理验证,我们使用非负矩阵分解对图谱进行聚类,以揭示典型的表达模式,并识别新的、层特异性标记基因。

与现有方法的比较

我们的方法利用 CNN 的优点解决了分子神经解剖学中的一系列重要问题,其性能与现有方法相当。

结论

我们编制的图谱允许在 OB 中跨数千个基因进行层内和层间的基因表达模式比较,并通过聚类识别典型的表达谱。我们预计这将成为研究嗅球发育和功能拓扑的研究人员的有用资源。我们的方法可供有兴趣将其扩展到其他脑区的人员使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e86/6637410/e8474a08d02e/nihms-1035121-f0001.jpg

相似文献

2
Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.高分辨率 T2 加权 MRI 上的自动嗅球分割。
Neuroimage. 2021 Nov 15;242:118464. doi: 10.1016/j.neuroimage.2021.118464. Epub 2021 Aug 10.
5
Genome-scale investigation of olfactory system spatial heterogeneity.嗅觉系统空间异质性的全基因组规模研究。
PLoS One. 2017 May 24;12(5):e0178087. doi: 10.1371/journal.pone.0178087. eCollection 2017.
6
RNA-seq analysis of developing olfactory bulb projection neurons.发育中的嗅球投射神经元的RNA测序分析
Mol Cell Neurosci. 2016 Jul;74:78-86. doi: 10.1016/j.mcn.2016.03.009. Epub 2016 Apr 9.
10
A single-cell atlas of mouse olfactory bulb chromatin accessibility.小鼠嗅球染色质可及性的单细胞图谱
J Genet Genomics. 2021 Feb 20;48(2):147-162. doi: 10.1016/j.jgg.2021.02.007. Epub 2021 Mar 17.

本文引用的文献

1
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
2
Genome-scale investigation of olfactory system spatial heterogeneity.嗅觉系统空间异质性的全基因组规模研究。
PLoS One. 2017 May 24;12(5):e0178087. doi: 10.1371/journal.pone.0178087. eCollection 2017.
3
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
4
A CNN Regression Approach for Real-Time 2D/3D Registration.一种用于实时 2D/3D 配准的 CNN 回归方法。
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.
7
Olfactory maps in the brain.大脑中的嗅觉图谱。
Annu Rev Neurosci. 2011;34:233-58. doi: 10.1146/annurev-neuro-061010-113738.
9
Intensity-based image registration by minimizing residual complexity.基于残差复杂度最小化的强度图像配准。
IEEE Trans Med Imaging. 2010 Nov;29(11):1882-91. doi: 10.1109/TMI.2010.2053043. Epub 2010 Jun 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验