Xia Yifan, Ma Jiayi
IEEE Trans Image Process. 2022;31:5093-5108. doi: 10.1109/TIP.2022.3192993. Epub 2022 Aug 2.
Feature matching is a fundamental problem in many computer vision tasks. This paper proposes a novel effective framework for mismatch removal, named LOcality-guided Global-preserving Optimization (LOGO). To identify inliers from a putative matching set generated by feature descriptor similarity, we introduce a fixed-point progressive approach to optimize a graph-based objective, which represents a two-class assignment problem regarding an affinity matrix containing global structures. We introduce a strategy that a small initial set with a high inlier ratio exploits the topology of the affinity matrix to elicit other inliers based on their reliable geometry, which enhances the robustness to outliers. Geometrically, we provide a locality-guided matching strategy, i.e., using local topology consensus as a criterion to determine the initial set, thus expanding to yield the final feature matching set. In addition, we apply local affine transformations based on reference points to determine the local consensus and similarity scores of nodes and edges, ensuring the validity and generality for various scenarios including complex nonrigid transformations. Extensive experiments demonstrate the effectiveness and robustness of the proposed LOGO, which is competitive with the current state-of-the-art methods. It also exhibits favorable potential for high-level vision tasks, such as essential and fundamental matrix estimation, image registration and loop closure detection.
特征匹配是许多计算机视觉任务中的一个基本问题。本文提出了一种用于去除错配的新颖有效框架,名为局部引导全局保持优化(LOGO)。为了从由特征描述符相似性生成的假定匹配集中识别内点,我们引入了一种定点渐进方法来优化基于图的目标,该目标表示关于包含全局结构的亲和矩阵的两类分配问题。我们引入了一种策略,即具有高内点率的小初始集利用亲和矩阵的拓扑结构,基于其可靠的几何形状引出其他内点,这增强了对异常值的鲁棒性。从几何角度来看,我们提供了一种局部引导匹配策略,即使用局部拓扑一致性作为确定初始集的标准,从而扩展以产生最终的特征匹配集。此外,我们基于参考点应用局部仿射变换来确定节点和边的局部一致性和相似性分数,确保在包括复杂非刚性变换在内的各种场景中的有效性和通用性。大量实验证明了所提出的LOGO的有效性和鲁棒性,它与当前的最先进方法具有竞争力。它在诸如本质矩阵和基本矩阵估计、图像配准和回环检测等高级视觉任务中也展现出良好的潜力。