Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.
Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States.
Biochemistry. 2022 Aug 16;61(16):1683-1693. doi: 10.1021/acs.biochem.2c00022. Epub 2022 Jul 27.
Canonically, MST1/2 functions as a core kinase of the Hippo pathway and noncanonically during both apoptotic signaling and with RASSFs in T-cells. Faithful signal transduction by MST1/2 relies on both appropriate activation and regulated substrate phosphorylation by the activated kinase. Considerable progress has been made in understanding the molecular mechanisms regulating the activation of MST1/2 and identifying downstream signaling events. Here, we investigated the ability of MST2 to phosphorylate a peptide substrate and how that activity is regulated. Using a steady-state kinetic system, we parse the contribution of different factors to substrate phosphorylation, including the domains of MST2, phosphorylation, caspase cleavage, and complex formation. We found that in the unphosphorylated state, the SARAH domain stabilizes interactions with a peptide substrate and promotes turnover. Phosphorylation drives the activity of MST2, and once activated, MST2 is not further regulated by complex formation with other Hippo pathway components (SAV1, MOB1A, and RASSF5). We also show that the phosphorylated, caspase-cleaved MST2 is as active as the full-length one, suggesting that caspase-stimulated activity arises through noncatalytic mechanisms. The kinetic analysis presented here establishes a framework for interpreting how signaling events and post-translational modifications contribute to the signaling of MST2 in vivo.
规范上,MST1/2 作为 Hippo 途径的核心激酶,以及在凋亡信号和 T 细胞中的 RASSFs 中发挥非规范作用。MST1/2 的忠实信号转导依赖于激活激酶的适当激活和受调控的底物磷酸化。在理解调节 MST1/2 激活的分子机制和鉴定下游信号事件方面已经取得了相当大的进展。在这里,我们研究了 MST2 磷酸化肽底物的能力以及该活性如何受到调节。我们使用稳态动力学系统,解析了不同因素对底物磷酸化的贡献,包括 MST2 的结构域、磷酸化、半胱天冬酶切割和复合物形成。我们发现,在未磷酸化状态下,SARAH 结构域稳定与肽底物的相互作用并促进周转。磷酸化驱动 MST2 的活性,并且一旦被激活,MST2 就不会被与其他 Hippo 途径成分(SAV1、MOB1A 和 RASSF5)形成复合物进一步调节。我们还表明,磷酸化的、半胱天冬酶切割的 MST2 与全长形式一样活跃,表明半胱天冬酶刺激的活性是通过非催化机制产生的。这里提出的动力学分析为解释信号事件和翻译后修饰如何有助于 MST2 在体内的信号转导提供了一个框架。