Suppr超能文献

基于清醒小鼠新皮层局部场电位记录的网络状态分类。

Network States Classification based on Local Field Potential Recordings in the Awake Mouse Neocortex.

机构信息

Neural coding laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.

出版信息

eNeuro. 2022 Aug 19;9(4). doi: 10.1523/ENEURO.0073-22.2022. Print 2022 Jul-Aug.

Abstract

Recent studies using intracellular recordings in awake behaving mice revealed that cortical network states, defined based on membrane potential features, modulate sensory responses and perceptual outcomes. Single-cell intracellular recordings are difficult and have low yield compared to extracellular recordings of population signals, such as local field potentials (LFPs). However, it is currently unclear how to identify these behaviorally-relevant network states from the LFP. We used simultaneous LFP and intracellular recordings in the somatosensory cortex of awake mice to design a network state classification from the LFP, the Network State Index (NSI). We used the NSI to analyze the relationship between single-cell (intracellular) and population (LFP) signals over different network states of wakefulness. We found that graded levels of population signal faithfully predicted the levels of single-cell depolarization in nonrhythmic regimes whereas, in δ ([2-4 Hz]) oscillatory regimes, the graded levels of rhythmicity in the LFP mapped into a stereotypical oscillatory pattern of membrane potential. Finally, we showed that the variability of network states, beyond the occurrence of slow oscillatory activity, critically shaped the average correlations between single-cell and population signals. Application of the LFP-based NSI to mouse visual cortex data showed that this index increased with pupil size and during locomotion and had a U-shaped dependence on population firing rates. NSI-based characterization provides a ready-to-use tool to understand from LFP recordings how the modulation of local network dynamics shapes the flexibility of sensory processing during behavior.

摘要

最近,在清醒活动的小鼠中进行的细胞内记录研究表明,基于膜电位特征定义的皮质网络状态调节感觉反应和知觉结果。与群体信号(如局部场电位 (LFP))的细胞外记录相比,单细胞细胞内记录较为困难且产量较低。然而,目前尚不清楚如何从 LFP 中识别这些与行为相关的网络状态。我们使用清醒小鼠体感皮层中的同时 LFP 和细胞内记录,从 LFP 中设计了一种网络状态分类,即网络状态指数 (NSI)。我们使用 NSI 分析了不同清醒状态下单细胞(细胞内)和群体(LFP)信号之间的关系。我们发现,群体信号的分级水平忠实地预测了非节律状态下单细胞去极化的水平,而在 δ ([2-4 Hz]) 振荡状态下,LFP 中的节律性分级水平映射到膜电位的典型振荡模式。最后,我们表明,网络状态的可变性,超出了慢振荡活动的发生,极大地影响了单细胞和群体信号之间的平均相关性。将基于 LFP 的 NSI 应用于小鼠视觉皮层数据表明,该指数随着瞳孔大小和运动的增加而增加,并且与群体放电率呈 U 形依赖性。基于 NSI 的特征描述提供了一种现成的工具,可以从 LFP 记录中了解局部网络动态的调制如何在行为过程中塑造感觉处理的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53f/9395246/43c84fc6fb38/ENEURO.0073-22.2022_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验