Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
Cell Rep. 2019 Apr 23;27(4):1119-1132.e7. doi: 10.1016/j.celrep.2019.03.102.
The awake cortex exhibits diverse non-rhythmic network states. However, how these states emerge and how each state impacts network function is unclear. Here, we demonstrate that model networks of spiking neurons with moderate recurrent interactions display a spectrum of non-rhythmic asynchronous dynamics based on the level of afferent excitation, from afferent input-dominated (AD) regimes, characterized by unbalanced synaptic currents and sparse firing, to recurrent input-dominated (RD) regimes, characterized by balanced synaptic currents and dense firing. The model predicted regime-specific relationships between different neural biophysical properties, which were all experimentally validated in the somatosensory cortex (S1) of awake mice. Moreover, AD regimes more precisely encoded spatiotemporal patterns of presynaptic activity, while RD regimes better encoded the strength of afferent inputs. These results provide a theoretical foundation for how recurrent neocortical circuits generate non-rhythmic waking states and how these different states modulate the processing of incoming information.
觉醒皮层表现出多种非节律性的网络状态。然而,这些状态是如何出现的,以及每种状态如何影响网络功能尚不清楚。在这里,我们证明了具有中等递归相互作用的尖峰神经元模型网络根据传入兴奋的水平显示出一系列非节律性异步动力学,从由传入输入主导(AD)的状态,其特征是不平衡的突触电流和稀疏的放电,到由递归输入主导(RD)的状态,其特征是平衡的突触电流和密集的放电。该模型预测了不同神经生物物理特性之间的特定于状态的关系,这些关系在清醒小鼠的体感皮层(S1)中均得到了实验验证。此外,AD 状态更精确地编码了前突触活动的时空模式,而 RD 状态更好地编码了传入输入的强度。这些结果为递归新皮层电路如何产生非节律性觉醒状态以及这些不同状态如何调节传入信息的处理提供了理论基础。
J Neurophysiol. 2001-5
Trends Neurosci. 2012-5-12
Biol Cybern. 2000-12
PLoS Comput Biol. 2016-8-19
PLoS Comput Biol. 2023-5
NPJ Syst Biol Appl. 2025-5-9
Front Cell Neurosci. 2025-1-23
Neuron. 2024-2-21
Comput Struct Biotechnol J. 2023-1-11