Suppr超能文献

一种基于引导优化的双层单目标算法,用于降低虚拟筛选中的计算成本。

A two-layer mono-objective algorithm based on guided optimization to reduce the computational cost in virtual screening.

机构信息

Supercomputing-Algorithms Research Group (SAL), Agrifood Campus of International Excellence, University of Almería, Carretera Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.

Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, Universidad Católica San Antonio De Murcia (UCAM), Campus de los Jerónimos, 30107, Murcia, Spain.

出版信息

Sci Rep. 2022 Jul 27;12(1):12769. doi: 10.1038/s41598-022-16913-w.

Abstract

Virtual screening methods focus on searching molecules with similar properties to a given compound. Molecule databases are made up of large numbers of compounds and are constantly increasing. Therefore, fast and efficient methodologies and tools have to be designed to explore them quickly. In this context, ligand-based virtual screening methods are a well-known and helpful tool. These methods focus on searching for the most similar molecules in a database to a reference one. In this work, we propose a new tool called 2L-GO-Pharm, which requires less computational effort than OptiPharm, an efficient and robust piece of software recently proposed in the literature. The new-implemented tool maintains or improves the quality of the solutions found by OptiPharm, and achieves it by considerably reducing the number of evaluations needed. Some of the strengths that help 2L-GO-Pharm enhance searchability are the reduction of the search space dimension and the introduction of some circular limits for the angular variables. Furthermore, to ensure a trade-off between exploration and exploitation of the search space, it implements a two-layer strategy and a guided search procedure combined with a convergence test on the rotation axis. The performance of 2L-GO-Pharm has been tested by considering two different descriptors, i.e. shape similarity and electrostatic potential. The results show that it saves up to 87.5 million evaluations per query molecule.

摘要

虚拟筛选方法侧重于搜索具有与给定化合物相似性质的分子。分子数据库由大量化合物组成,并且还在不断增加。因此,必须设计快速有效的方法和工具来快速探索它们。在这种情况下,基于配体的虚拟筛选方法是一种众所周知且很有帮助的工具。这些方法侧重于在数据库中搜索与参考化合物最相似的分子。在这项工作中,我们提出了一种名为 2L-GO-Pharm 的新工具,与最近文献中提出的高效稳健软件 OptiPharm 相比,它需要的计算工作量更少。新实现的工具保持或提高了 OptiPharm 找到的解决方案的质量,通过大大减少所需的评估数量来实现这一点。有助于 2L-GO-Pharm 提高可搜索性的一些优势包括降低搜索空间维度和为角度变量引入一些圆形限制。此外,为了在搜索空间的探索和利用之间取得平衡,它实现了两层策略和引导搜索过程,以及对旋转轴的收敛测试。通过考虑两种不同的描述符,即形状相似性和静电势,对 2L-GO-Pharm 的性能进行了测试。结果表明,它为每个查询分子节省了多达 8750 万次评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc6/9329480/3868349f8237/41598_2022_16913_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验