文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚类分析确定了重症监护队列中创伤性脑损伤的表型:CENTER-TBI 研究。

Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study.

机构信息

Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Crit Care. 2022 Jul 27;26(1):228. doi: 10.1186/s13054-022-04079-w.


DOI:10.1186/s13054-022-04079-w
PMID:35897070
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9327174/
Abstract

BACKGROUND: While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as 'mild', 'moderate' or 'severe' based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. METHODS: We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. RESULTS: Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with 'moderate' TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with 'severe' GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). CONCLUSIONS: Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221 , registered on August 06, 2014, with Resource Identification Portal (RRID: SCR_015582).

摘要

背景:格拉斯哥昏迷评分(GCS)是最强的预后预测因子之一,但目前根据该评分将创伤性脑损伤(TBI)分类为“轻度”、“中度”或“重度”,未能捕捉到病理生理学和治疗反应的巨大异质性。我们假设基于数据的 TBI 特征描述可以识别不同的表型,并提供机制见解。

方法:我们基于混合概率图开发了一种无监督统计聚类模型,用于呈现(<24 小时)人口统计学、临床、生理、实验室和影像学数据,以识别 CENTER-TBI 数据集(N=1728)中 ICU 收治的 TBI 患者亚组。使用聚类相似性指数来确定最佳聚类数。互信息用于量化特征重要性和聚类解释。

结果:确定了 6 种稳定的表型,具有不同的 GCS 和复合全身代谢应激特征,通过 GCS、血乳酸、氧饱和度、血清肌酐、血糖、碱剩余、pH、动脉二氧化碳分压和体温来区分。值得注意的是,一个具有“中度”TBI(按传统分类)和代谢紊乱特征的聚类比具有“重度”GCS 和正常代谢特征的聚类的预后更差。添加聚类标签显著提高了 IMPACT(创伤性脑损伤临床试验国际使命)扩展模型预测不良结局和死亡率的预后准确性(均<0.001)。

结论:通过概率无监督聚类确定了 6 种稳定且具有临床差异的 TBI 表型。除了表现出神经病学特征外,还发现生化紊乱特征是一个重要的鉴别特征,既具有生物学合理性,又与结局相关。我们的工作促使用描述代谢应激的因素来改进当前的 TBI 分类。这种基于数据的聚类提示 TBI 表型值得进一步研究,以确定改善护理的定制治疗策略。

试验注册:核心研究在 ClinicalTrials.gov 上注册,编号为 NCT02210221,于 2014 年 8 月 6 日注册,资源标识符门户(RRID:SCR_015582)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/7c01109a17ba/13054_2022_4079_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/e5f7d7b6df4a/13054_2022_4079_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/2d630d29558b/13054_2022_4079_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/fc37599ebd5e/13054_2022_4079_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/90f822f9ef17/13054_2022_4079_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/48c5d3103bb3/13054_2022_4079_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/7c01109a17ba/13054_2022_4079_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/e5f7d7b6df4a/13054_2022_4079_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/2d630d29558b/13054_2022_4079_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/fc37599ebd5e/13054_2022_4079_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/90f822f9ef17/13054_2022_4079_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/48c5d3103bb3/13054_2022_4079_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/9327174/7c01109a17ba/13054_2022_4079_Fig6_HTML.jpg

相似文献

[1]
Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study.

Crit Care. 2022-7-27

[2]
Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study.

Lancet Neurol. 2019-10

[3]
Effect of frailty on 6-month outcome after traumatic brain injury: a multicentre cohort study with external validation.

Lancet Neurol. 2022-2

[4]
Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study.

J Neurosurg. 2016-4-1

[5]
Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes.

J Neurotrauma. 2020-6-15

[6]
Risk Adjustment In Neurocritical care (RAIN)--prospective validation of risk prediction models for adult patients with acute traumatic brain injury to use to evaluate the optimum location and comparative costs of neurocritical care: a cohort study.

Health Technol Assess. 2013-6

[7]
Simplifying the use of prognostic information in traumatic brain injury. Part 1: The GCS-Pupils score: an extended index of clinical severity.

J Neurosurg. 2018-4-10

[8]
Simplifying the use of prognostic information in traumatic brain injury. Part 2: Graphical presentation of probabilities.

J Neurosurg. 2018-4-10

[9]
Toward a New Multi-Dimensional Classification of Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research for Traumatic Brain Injury Study.

J Neurotrauma. 2020-4-1

[10]
Sub-classifying patients with mild traumatic brain injury: A clustering approach based on baseline clinical characteristics and 90-day and 180-day outcomes.

PLoS One. 2018-7-11

引用本文的文献

[1]
Implementing Artificial Intelligence in Critical Care Medicine: a consensus of 22.

Crit Care. 2025-7-8

[2]
Differential DNA Methylation of the Brain-Derived Neurotrophic Factor Gene is Observed after Pediatric Traumatic Brain Injury Compared to Orthopedic Injury.

medRxiv. 2025-6-16

[3]
Distinct clinical phenotypes and their neuroanatomic correlates in chronic traumatic brain injury.

Brain Commun. 2025-6-6

[4]
Leveraging Function Intersectionality and Multi-Modal Cerebrovascular Reactivity Measures for the Derivation of Individualized Intracranial Pressure Thresholds in Acute Traumatic Neural Injury.

Bioengineering (Basel). 2025-5-2

[5]
Continuous personalized cerebrovascular reactivity-based physiologic metrics in neurocritical care: a narrative review of the current landscape, limitations, and future directions.

Front Physiol. 2025-5-6

[6]
Distinct clinical phenotypes and their neuroanatomic correlates in chronic traumatic brain injury.

medRxiv. 2025-1-29

[7]
Machine Learning Approaches to Prognostication in Traumatic Brain Injury.

Curr Neurol Neurosci Rep. 2025-2-19

[8]
ASA score is an independent predictor of 1-year outcome after moderate-to-severe traumatic brain injury.

Scand J Trauma Resusc Emerg Med. 2025-2-6

[9]
Prospective Harmonization, Common Data Elements, and Sharing Strategies for Multicenter Pre-Clinical Traumatic Brain Injury Research in the Translational Outcomes Project in Neurotrauma Consortium.

J Neurotrauma. 2025-5

[10]
Group-Based Trajectory Modeling Identifies Distinct Patterns of Sympathetic Hyperactivity Following Traumatic Brain Injury.

Neurocrit Care. 2025-1-3

本文引用的文献

[1]
Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury: A TRACK-TBI Study With External Validation in CENTER-TBI.

JAMA Neurol. 2021-9-1

[2]
The features of the typical traumatic brain injury patient in the ICU are changing: what will this mean for the intensivist?

Curr Opin Crit Care. 2021-4-1

[3]
Assessing the Severity of Traumatic Brain Injury-Time for a Change?

J Clin Med. 2021-1-4

[4]
Changing care pathways and between-center practice variations in intensive care for traumatic brain injury across Europe: a CENTER-TBI analysis.

Intensive Care Med. 2020-5

[5]
Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes.

J Neurotrauma. 2020-6-15

[6]
Toward a New Multi-Dimensional Classification of Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research for Traumatic Brain Injury Study.

J Neurotrauma. 2020-4-1

[7]
A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).

Intensive Care Med. 2019-10-28

[8]
Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study.

Lancet Neurol. 2019-10

[9]
Transcriptomic Signatures in Sepsis and a Differential Response to Steroids. From the VANISH Randomized Trial.

Am J Respir Crit Care Med. 2019-4-15

[10]
Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease.

Clin Rev Allergy Immunol. 2019-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索