Chrobak Dariusz, Dulski Mateusz, Ziółkowski Grzegorz, Chrobak Artur
Institute of Materials Engenering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland.
Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
Materials (Basel). 2022 Jul 22;15(15):5098. doi: 10.3390/ma15155098.
Nanoindentations and the Raman spectroscopy measurements were carried out on the (001) surface of undoped and S-doped InP crystal. The samples were indented with the maximum load ranging from 15 mN to 100 mN. The phase transition B3→B1 was not confirmed by spectroscopic experiments, indicating a plastic deformation mechanism governed by dislocations activity. Increasing the maximum indentation load shifts and the longitudinal and transverse optical Raman bands to lower frequencies reveals a reduction in the elastic energy stored in the plastic zone right below the indentation imprint. Mechanical experiments have shown that a shift in Raman bands occurs alongside the indentation size effect. Indeed, the hardness of undoped and S-doped InP crystal decreases as a function of the maximum indentation load.
对未掺杂和硫掺杂的磷化铟晶体的(001)表面进行了纳米压痕和拉曼光谱测量。样品以15毫牛至100毫牛的最大载荷进行压痕。光谱实验未证实B3→B1的相变,这表明塑性变形机制受位错活动控制。增加最大压痕载荷会使纵向和横向光学拉曼带向低频移动,这表明在压痕印记正下方的塑性区中存储的弹性能减少。力学实验表明,拉曼带的移动与压痕尺寸效应同时发生。实际上,未掺杂和硫掺杂的磷化铟晶体的硬度随最大压痕载荷的增加而降低。