Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77483.
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77483
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2025657118.
The origin of the indentation size effect has been extensively researched over the last three decades, following the establishment of nanoindentation as a broadly used small-scale mechanical testing technique that enables hardness measurements at submicrometer scales. However, a mechanistic understanding of the indentation size effect based on direct experimental observations at the dislocation level remains limited due to difficulties in observing and quantifying the dislocation structures that form underneath indents using conventional microscopy techniques. Here, we employ precession electron beam diffraction microscopy to "look beneath the surface," revealing the dislocation characteristics (e.g., distribution and total length) as a function of indentation depth for a single crystal of nickel. At smaller depths, individual dislocation lines can be resolved, and the dislocation distribution is quite diffuse. The indentation size effect deviates from the Nix-Gao model and is controlled by dislocation source starvation, as the dislocations are very mobile and glide away from the indented zone, leaving behind a relatively low dislocation density in the plastically deformed volume. At larger depths, dislocations become highly entangled and self-arrange to form subgrain boundaries. In this depth range, the Nix-Gao model provides a rational description because the entanglements and subgrain boundaries effectively confine dislocation movement to a small hemispherical volume beneath the contact impression, leading to dislocation interaction hardening. The work highlights the critical role of dislocation structural development in the small-scale mechanistic transition in indentation size effect and its importance in understanding the plastic deformation of materials at the submicron scale.
微区压痕尺寸效应的起源已经被广泛研究了三十年,这是在纳米压痕技术作为一种广泛使用的微尺度力学测试技术被建立之后的事情,这种技术使得在亚微米尺度上进行硬度测量成为可能。然而,由于在使用传统显微镜技术观察和量化在压痕下形成的位错结构方面存在困难,基于在位错水平上直接实验观察的对微区压痕尺寸效应的机械理解仍然有限。在这里,我们采用了电子束进动衍射显微镜“窥探表面之下”,揭示了单晶镍的位错特征(例如,分布和总长度)作为压痕深度的函数。在较小的深度下,可以分辨出单个位错线,并且位错分布相当弥散。压痕尺寸效应偏离了 Nix-Gao 模型,并且由位错源的缺乏所控制,因为位错非常活跃并且从压痕区域滑出,在塑性变形体积中留下相对较低的位错密度。在较大的深度下,位错变得高度缠结并自行排列形成亚晶粒边界。在这个深度范围内,Nix-Gao 模型提供了一个合理的描述,因为缠结和亚晶粒边界有效地将位错运动限制在接触压痕下的一个小半球形体积内,导致位错相互作用硬化。这项工作强调了位错结构发展在压痕尺寸效应的微观机制转变中的关键作用,以及它在理解亚微米尺度下材料的塑性变形中的重要性。